簡易檢索 / 詳目顯示

研究生: 林鴻宇
Hung-Yu Lin
論文名稱: 以先進先出佇列為基礎的光學緩衝系統
FIFO Queue Based Optical Buffering System
指導教授: 馮開明
Kai-Ming Feng
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 60
中文關鍵詞: 先進先出佇列光學緩衝波長轉換陣列波導光學光柵
外文關鍵詞: FIFO Queue, Optical Buffer, Wavelength Conversion, AWGR
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    近幾年來,由於網路越來越普及,因此光通訊的高傳輸需求快速上升,分波多工有效地應用在光纖網路上,光纖通訊所能提供的頻寬因此大大地提升許多。但是因為光纖通訊缺乏光的儲存技術,封包的交換系統至今仍然依賴電的技術來完成;要將光纖網路全部使用光的方式來實行,交換機所需要的緩衝系統是非常重要的一個要素。
    在這份論文裡,我們將提出一個能夠實FIFO Queue的光學緩衝系統,這個系統主要是由許多不同長度的光纖、一個8X8 陣列波導光學光柵路由器以及波長轉換系統所組合而成,每條光纖因為長度的不同,能夠提供的緩衝時間也因此不一樣。透過特殊的演算法,我們能夠將訊號所需的緩衝時間由特定的光纖所組合,經由8X8 陣列波導光學光柵路由器以及波長轉換所組成的路由架構,便能夠提供封包需要的路由路徑來獲得正確的緩衝時間。
    受制於時間以及儀器不足的限制,在這一份論文並沒有辦法實現完整的系統。但是針對光學緩衝系統所需要的主要技術:陣列波導光學光柵路由器以及波長轉換,在這份論文裡將逐一介紹。同時我們也透過實驗來證實這個架構確實能完成封包交換,並且透過陣列波導光學光柵路由器及波長轉換所組成的路由架構,也能夠順利地控制各個封包的路由路徑。在未來的實驗裡,只要將不足的波長轉換系統、Fast tunable laser以及光纖結合上去,便能夠實現一個以先進先出佇列為基礎的光學緩衝系統。


    內容 第一章 簡介 1-1 為什麼要使用光學緩衝系統 第二章 光學緩衝系統架構與原理 2-1 光學緩衝系統架構 2-2 訊號延遲時間拆解演算法 2-3 光學緩衝系統架構模擬 第三章 波長轉換系統 3-1 簡介 3-2 同向傳播(Co-propagation)與反向傳播(Counter-propagation) 3-3 XGM (Cross-Gain Modulation) 波長轉換 3-3.1原理簡介 3-3.2模擬環境架設 3-3.3模擬結果與實驗結果 3-4 XPM (Cross-Phase Modulation) 波長轉換 3-4.1 原理與簡介 3-4.2 模擬架設與模擬結果 3-4.3 實驗結果 3-5 使用XPM為基礎結構的2R-Regenerator 3-5.1 簡介 3-5.2 模擬架設與模擬結果 3-5.3 實驗結果 3-6 波長轉換串接能力 第四章 陣列波導光學光柵路由器(AWGR) 4-1 原理與簡介 4-2 陣列波導光學光柵路由器傳輸特性 4-3自由頻譜區域 (Free Spectrum Range, FSR 第五章 一對八全光式交換機結構 5-1 簡介 5-2 一對八交換機 5-3 一對八交換機反射與串音問題 5-3.1來自P2R的反射問題 5-3.2來自AWGR的串音問題 5-4 封包交換 第六章 結論與未來展望 6-1 結論 6-2 未來展望 參考文獻

    參考文獻
    [1] Chih-Chieh Chou, Cheng-Shang Chang, Duan-Shin Lee, and Jay Cheng, “A Necessary and Sufficient Condition for the Construction of 2-to-1 Optical FIFO Multiplexers by a Single Crossbar Switch and Fiber Delay Lines,” IEEE Transactions on Information Theory, vol. 52, pp. 4519-4531, 2006.
    [2] Joergensen, C. Danielsen, S.L. Stubkjaer, K.E. Schilling, M. Daub, K. Doussiere, P. Pommerau, F. Hansen, P.B. Poulsen, H.N. Kloch, A. Vaa, M. Mikkelsen, B. Lach, E. Laube, G. Idler, W. Wunstel, K., “All-Optical Wavelength Conversion at Bit Rates Above 10 Gb/s Using Semiconductor Optical Amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 3, issue 5, pp.1168-1179, Oct. 1997
    [3] C. Danielsen, S.L. Vaa, M. Mikkelsen, B. Stubkjaer, K.E. Doussiere, P. Pommerau,“40Gbit/s All-Optical Wavelength Conversion by Semiconductor Optical Amplifiers,” IEEE Electronics Letters, vol. 32, No. 4, pp. 367-368, February 1996.
    [4] J.M. Wiesenfeld, “Wavelength Conversion Techniques in Optical Networks,” Vertical-Cavity Lasers, Technologies for a Global Information Infrastructure, WDM Components Technology, Advanced Semiconductor Lasers ..., Gallium Nitride Materials, Processing, ..., 1997 Digest of the IEEE/LEOS Summer Topical Meetings, pp. 42-43, Aug. 1997, Montreal, Que., Canada.
    [5] Papadimitriou, G.I. Papazoglou, C. Pomportsis, A.S., ” Optical Switching: Switch Fabrics, Techniques, and Architectures,” IEEE/OSA Journal of Lightwave Technology, vol. 21, pp. 384-405, Feb. 2003.
    [6] Michael J. Connelly, “Semiconductor Optical Amplifiers,” Kluwer Academic Publishers, pp. 71.
    [7] J.M. Wiesenfeld, B. Glance, J.S. Perino, A.H. Gnauck, “Wavelength conversion at 10 Gb/s using a semiconductor optical amplifier,” IEEE Photonics Technology Letters, vol. 5, issue 11, pp.1300-1303, Nov. 1993.
    [8] X. Zheng, F. Liu, and A. Kloch, “Experimental Investigation of the Cascadability of a Cross-Gain Modulation Wavelength Converter,” IEEE Photonics Technology Letters, vol. 12, no. 3, pp. 272-274, March 2000.
    [9] Yabin Ye, Xiaoping Zheng, Hanyi Zhang, Yanhe Li, and Yili Guo, “Theoretical Study on Wavelength Conversion Based on Cross Phase Modulation Using Semiconductor Optical Amplifiers,” International Journal of Infrared and Millimeter Waves, Vol. 22, No. 12, pp. 1785-1793, December 2001
    [10] W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dutting, M. Klenk, E. Lach, and K. Wunstel, “10Gb/s Wavelength Conversion with Integrated Multiquantum-Well-Based 3 Ports Mach-Zehnder Interferometer”, Photonics Technology Letters, vol. 8, No. 9, pp.1163-1165, September 1996.
    [11] Terji Durhuus, Benny Mikkelsen, Carsten Joergensen, Soeren Lykke Danielsen, and Kristian E. Stubkjaer, “All-Optical Wavelength Conversion by Semiconductor Optical Aamplifiers,” IEEE/OSA Journal of Lightwave Technology, vol. 14, No. 6, pp.942-955, JUNE, 1996.
    [12] Rieko Sato, Toshio Ito, Katsuaki Magari Jun Endo, Ikuo Ogawa, Yasuyuki Inoue, Ryouichi Kasahara, Yuichi Tohmori, Yasuhiro Suzuki, and Shunichi Tohno, “Tuning Technique to Optimize Input Power of a Cross-Phase Modulation Wavelength Converter,” IEEE/OSA Journal of Lightwave Technology, vol. 22, No. 8, pp. 1883- 1892, August, 2004.
    [13]S.C. Cao, J.C. Cartledge, E. Berolo, “Theoretical Model of Gain-Saturated Semiconductor Optical Amplifiers in Cross-Phase Modulation Wavelength Converters,” 13th Annual Meeting of the IEEE. Lasers and Electro-Optics Society 2000 Annual Meeting. LEOS 2000. vol. 2, pp. 778-779, Nov, 2000, Ottawa, Ont..
    [14] Dong Churl Kim, Min Yong Jeon, Young Ahn Leem, Eun Deok Shim, Dae-Su Yee and Kyung Hyun Park, “Extinction Ratio Improvement and Negative Bit-Error-Rate Penalty in Mach–Zehnder Interferometric Wavelength Converter for Optical 2R Regeneration,” Japanese Journal of Applied Physics, Vol. 44, No. 11, 2005, pp. 8010-8012, 2005.
    [15] F. Ohman, J. Mork, “Modeling of bit error rate in cascaded 2R regenerators,” IEEE/OSA Journal of Lightwave Technology, vol. 24, issue 2, pp. 1057-1063, Feb. 2006.
    [16] M.R.G. Leiria; A.V.T. Cartaxo, “On the optimization of regenerator parameters in a chain of 2R all-optical regenerators,” IEEE Photonics Technology Letters, vol. 18, issue 16, pp. 1711-1713, August 15, 2006.
    [17] Pascual Muñoz, Daniel Pastor, and José Capmany, “Modeling and Design of Arrayed Waveguide Gratings.” IEEE/OSA Journal of Lightwave Technology, vol. 20, No. 4, pp. 661-674, April, 2002.
    [18] H. Takahashi, K. Oda, H. Toba, Y. Inoue, “Transmission Characteristics of Arrayed Waveguide N×N Wavelength Multiplexer, ” IEEE/OSA Journal of Lightwave Technology, vol. 13, No 3, pp. 447-455, March, 1995.
    [19] Wei Wang, Lavanya G. Rau, and Daniel J. Blumenthal, “160 Gb/s Variable Length Packet/10 Gb/s-Label All-Optical Label Switching With Wavelength Conversion and Unicast/Multicast Operation,” IEEE/OSA Journal of Lightwave Technology, vol. 23, no. 1, pp.211-218, January 2005
    [20] Chun-Kit Chan, Karl L. Sherman, and Martin Zirngibl, “A Fast 100-Channel Wavelength-Tunable Transmitter for Optical Packet Switching ,” IEEE Photonics Technology Letters, vol. 13, No. 7, pp. 729-731, JULY 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE