研究生: |
葉紫涵 |
---|---|
論文名稱: |
Chitosan打開細胞間Tight junction機制的探討 Mechanism of Chitosan Induced Tight Junction Opening |
指導教授: |
宋信文
Sung, Hsing-Wen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 50 |
中文關鍵詞: | 幾丁聚醣 、Tight junction |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
幾丁聚醣(chitosan)因具有將上皮細胞間tight junction (TJ)打開的特性,而被應用於口服或鼻腔給藥的藥物吸收促進劑,然而幾丁聚醣打開細胞間TJ的詳細機制尚未清楚了解。因此本研究分為兩個方向進行探討:第一部分為幾丁聚醣與細胞膜蛋白間的作用,首先以抗體阻斷膜蛋白與幾丁聚醣間可能的結合後,加入幾丁聚醣,利用transepithelial electrical resistance (TEER)測量TJ打開的情形,結果顯示coxsackievirus and adnovirus receptor (CAR)被抗體阻斷後,會抑制幾丁聚醣打開TJ的能力,因此進一步利用shRNA抑制細胞中CAR的表現量,以確認CAR在幾丁聚醣打開TJ中所扮演的角色。第二部分為利用microarray篩選出經幾丁聚醣處理後細胞所產生的基因表現變化情形,然後以RT-PCR測定以幾丁聚醣處理不移除及移除使TJ回復的兩組細胞中六種基因的表現變化。結果顯示TJ穿膜蛋白claudin-4在幾丁聚醣移除後1小時,基因表現會增為原先的6倍,而蛋白質表現量也會在1~4小時有2倍的增加。而在幾丁聚醣打開TJ的過程中,也經由分離細胞質/膜蛋白及免疫螢光染色的方式發現,隨著幾丁聚醣處理的時間,細胞膜內的claudin-4會有梯度性的下降情形。本實驗初步驗證幾丁聚醣打開TJ及其移除後TJ的回復過程中,claudin-4的表現量會受到顯著的影響。
1.Illum, L., N.F. Farraj, and S.S. Davis, Chitosan as a novel nasal delivery system for peptide drugs. Pharm Res, 1994. 11(8): p. 1186-9.
2.Thanou, M., J.C. Verhoef, and H.E. Junginger, Chitosan and its derivatives as intestinal absorption enhancers. Adv Drug Deliv Rev, 2001. 50 Suppl 1: p. S91-101.
3.Smith, J., E. Wood, and M. Dornish, Effect of chitosan on epithelial cell tight junctions. Pharm Res, 2004. 21(1): p. 43-9.
4.Artursson, P., et al., Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm Res, 1994. 11(9): p. 1358-61.
5.Smith, J.M., M. Dornish, and E.J. Wood, Involvement of protein kinase C in chitosan glutamate-mediated tight junction disruption. Biomaterials, 2005. 26(16): p. 3269-76.
6.Tsukita, S., M. Furuse, and M. Itoh, Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol, 2001. 2(4): p. 285-93.
7.Hossain, Z. and T. Hirata, Molecular mechanism of intestinal permeability: interaction at tight junctions. Mol Biosyst, 2008. 4(12): p. 1181-5.
8.Matter, K. and M.S. Balda, Signalling to and from tight junctions. Nat Rev Mol Cell Biol, 2003. 4(3): p. 225-36.
9.Coyne, C.B. and J.M. Bergelson, CAR: a virus receptor within the tight junction. Adv Drug Deliv Rev, 2005. 57(6): p. 869-82.
10.Van Itallie, C.M., et al., ZO-1 stabilizes the tight junction solute barrier through coupling to the perijunctional cytoskeleton. Mol Biol Cell, 2009. 20(17): p. 3930-40.
11.Nagumo, Y., et al., Cofilin mediates tight-junction opening by redistributing actin and tight-junction proteins. Biochem Biophys Res Commun, 2008. 377(3): p. 921-5.
12.Stamatovic, S.M., et al., Potential role of MCP-1 in endothelial cell tight junction 'opening': signaling via Rho and Rho kinase. J Cell Sci, 2003. 116(Pt 22): p. 4615-28.
13.Martin-Padura, I., et al., Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol, 1998. 142(1): p. 117-27.
14.Johnson-Leger, C.A., et al., Junctional adhesion molecule-2 (JAM-2) promotes lymphocyte transendothelial migration. Blood, 2002. 100(7): p. 2479-86.
15.Ebnet, K., et al., Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J Biol Chem, 2000. 275(36): p. 27979-88.
16.Ebnet, K., et al., The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J, 2001. 20(14): p. 3738-48.
17.Itoh, M., et al., Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J Cell Biol, 2001. 154(3): p. 491-7.
18.Liu, Y., et al., Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci, 2000. 113 ( Pt 13): p. 2363-74.
19.Barton, E.S., et al., Junction adhesion molecule is a receptor for reovirus. Cell, 2001. 104(3): p. 441-51.
20.Tyler, K.L., et al., Reoviruses and the host cell. Trends Microbiol, 2001. 9(11): p. 560-4.
21.Bergelson, J.M., et al., Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science, 1997. 275(5304): p. 1320-3.
22.Tomko, R.P., R. Xu, and L. Philipson, HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci U S A, 1997. 94(7): p. 3352-6.
23.Cohen, C.J., et al., The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci U S A, 2001. 98(26): p. 15191-6.
24.Walters, R.W., et al., Adenovirus fiber disrupts CAR-mediated intercellular adhesion allowing virus escape. Cell, 2002. 110(6): p. 789-99.
25.Raschperger, E., et al., The coxsackie- and adenovirus receptor (CAR) is an in vivo marker for epithelial tight junctions, with a potential role in regulating permeability and tissue homeostasis. Exp Cell Res, 2006. 312(9): p. 1566-80.
26.Zen, K., et al., Neutrophil migration across tight junctions is mediated by adhesive interactions between epithelial coxsackie and adenovirus receptor and a junctional adhesion molecule-like protein on neutrophils. Mol Biol Cell, 2005. 16(6): p. 2694-703.
27.Schneeberger, E.E. and R.D. Lynch, The tight junction: a multifunctional complex. Am J Physiol Cell Physiol, 2004. 286(6): p. C1213-28.
28.Brennan, K., et al., Tight junctions: a barrier to the initiation and progression of breast cancer? J Biomed Biotechnol. 2010: p. 460607.
29.Turksen, K. and T.C. Troy, Barriers built on claudins. J Cell Sci, 2004. 117(Pt 12): p. 2435-47.
30.Hartsock, A. and W.J. Nelson, Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta, 2008. 1778(3): p. 660-9.
31.Furuse, M., et al., Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol, 2002. 156(6): p. 1099-111.
32.Furuse, M., et al., Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol, 2001. 153(2): p. 263-72.
33.Banan, A., et al., theta Isoform of protein kinase C alters barrier function in intestinal epithelium through modulation of distinct claudin isotypes: a novel mechanism for regulation of permeability. J Pharmacol Exp Ther, 2005. 313(3): p. 962-82.
34.Leotlela, P.D., et al., Claudin-1 overexpression in melanoma is regulated by PKC and contributes to melanoma cell motility. Oncogene, 2007. 26(26): p. 3846-56.
35.Reid, K.B. and A.J. Day, Structure-function relationships of the complement components. Immunol Today, 1989. 10(6): p. 177-80.
36.Coyne, C.B. and J.M. Bergelson, Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell, 2006. 124(1): p. 119-31.
37.Bergelson, J.M., et al., Clinical coxsackievirus B isolates differ from laboratory strains in their interaction with two cell surface receptors. J Infect Dis, 1997. 175(3): p. 697-700.
38.Shafren, D.R., D.T. Williams, and R.D. Barry, A decay-accelerating factor-binding strain of coxsackievirus B3 requires the coxsackievirus-adenovirus receptor protein to mediate lytic infection of rhabdomyosarcoma cells. J Virol, 1997. 71(12): p. 9844-8.
39.Martino, T.A., et al., Cardiovirulent coxsackieviruses and the decay-accelerating factor (CD55) receptor. Virology, 1998. 244(2): p. 302-14.
40.Mellor, H. and P.J. Parker, The extended protein kinase C superfamily. Biochem J, 1998. 332 ( Pt 2): p. 281-92.
41.Citi, S., et al., Cytoskeletal involvement in the modulation of cell-cell junctions by the protein kinase inhibitor H-7. J Cell Sci, 1994. 107 ( Pt 3): p. 683-92.
42.Lin, D., et al., A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol, 2000. 2(8): p. 540-7.
43.Joberty, G., et al., The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol, 2000. 2(8): p. 531-9.
44.Suzuki, A., et al., Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures. J Cell Biol, 2001. 152(6): p. 1183-96.
45.Kroschewski, R., A. Hall, and I. Mellman, Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nat Cell Biol, 1999. 1(1): p. 8-13.
46.Nunbhakdi-Craig, V., et al., Protein phosphatase 2A associates with and regulates atypical PKC and the epithelial tight junction complex. J Cell Biol, 2002. 158(5): p. 967-78.
47.Balda, M.S., et al., Assembly and sealing of tight junctions: possible participation of G-proteins, phospholipase C, protein kinase C and calmodulin. J Membr Biol, 1991. 122(3): p. 193-202.
48.Nusrat, A., et al., Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proc Natl Acad Sci U S A, 1995. 92(23): p. 10629-33.
49.Zhong, C., M.S. Kinch, and K. Burridge, Rho-stimulated contractility contributes to the fibroblastic phenotype of Ras-transformed epithelial cells. Mol Biol Cell, 1997. 8(11): p. 2329-44.
50.Hasegawa, H., et al., Opposite regulation of transepithelial electrical resistance and paracellular permeability by Rho in Madin-Darby canine kidney cells. J Biol Chem, 1999. 274(30): p. 20982-8.
51.Jou, T.S., E.E. Schneeberger, and W.J. Nelson, Structural and functional regulation of tight junctions by RhoA and Rac1 small GTPases. J Cell Biol, 1998. 142(1): p. 101-15.
52.Wojciak-Stothard, B., et al., Rho and Rac but not Cdc42 regulate endothelial cell permeability. J Cell Sci, 2001. 114(Pt 7): p. 1343-55.
53.Braga, V.M., et al., Regulation of cadherin function by Rho and Rac: modulation by junction maturation and cellular context. Mol Biol Cell, 1999. 10(1): p. 9-22.
54.Adamson, P., et al., Lymphocyte migration through brain endothelial cell monolayers involves signaling through endothelial ICAM-1 via a rho-dependent pathway. J Immunol, 1999. 162(5): p. 2964-73.
55.Fujita, H., et al., Molecular decipherment of Rho effector pathways regulating tight-junction permeability. Biochem J, 2000. 346 Pt 3: p. 617-22.
56.Hirase, T., et al., Regulation of tight junction permeability and occludin phosphorylation by Rhoa-p160ROCK-dependent and -independent mechanisms. J Biol Chem, 2001. 276(13): p. 10423-31.
57.Etienne-Manneville, S. and A. Hall, Rho GTPases in cell biology. Nature, 2002. 420(6916): p. 629-35.
58.Hecht, G., et al., Expression of the catalytic domain of myosin light chain kinase increases paracellular permeability. Am J Physiol, 1996. 271(5 Pt 1): p. C1678-84.
59.Turner, J.R., et al., Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am J Physiol, 1997. 273(4 Pt 1): p. C1378-85.
60.Lanaspa, M.A., et al., Hypertonic stress increases claudin-4 expression and tight junction integrity in association with MUPP1 in IMCD3 cells. Proc Natl Acad Sci U S A, 2008. 105(41): p. 15797-802.