研究生: |
吳鎮宇 Wu, Chen-Yu |
---|---|
論文名稱: |
具極化控制之晶圓級端面耦光光學探針設計與製作 Development and Manufacturing of Wafer-level Optical Probe Card with Polarization Control |
指導教授: |
李明昌
Lee, Ming-Chang |
口試委員: |
施閔雄
Shih, Min-Hsiung 邱華恭 Chiu, Hua-Kung |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2021 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 極化控制 、晶圓級 、光學探針 、端面耦光 、光柵 、邊緣耦合器 |
外文關鍵詞: | Polarization Control, Optical Probe Card, Wafer-level, Grating, Edge Coupler |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中之具極化控制之光學探針,主要想法為達成邊緣耦合器晶圓級量測,探針卡為晶圓級量測中光纖與待測物之間的橋梁,探針卡將以CMOS製程以及SOI wafer為基礎製作,以矽-氮化矽雙層異介質波導為基礎設計元件,利用兩異介質材料組成的二維光柵耦合器與待測物的邊緣耦合器進行耦光,此雙層二維光柵耦合器以垂直收發光源為目標,藉由設計兩層光柵之間的位移、填充率(duty cycle)以及週期,使朝向基板的一階繞射與二階繞射(反射)達成破壞干涉條件,減低了光柵耦合器垂直晶面出射時造成的多階繞射損耗;探針卡的另一端則使用錐形漸變式邊緣耦合器(inverted taper coupler)與光纖陣列封裝;兩端口之間利用選擇器控制光學路徑,進而達到極化控制的效果,光柵耦合器由Lumerical粒子群演算法優化效率,再經過漸變式光柵填充率使能量分布吻合待測物。
在量測結果中,一維光柵耦合器插入損耗為5.2dB,二維光柵光柵耦合器插入損耗為10.83dB,最後以矽光子晶片為待測物,成功實現晶圓級探針卡量測。
In this thesis, we plan to develop an optical probe card to test on-wafer multiple Si photonics devices through edge coupling. The probe card can control the polarization of launched wavelength and detected wavelength for individual devices, respectively. It is made on silicon-on-insulator (SOI) substrate through a CMOS-compatible process On the optical probe card, there are 2D grating couplers composed of two dielectric grating layers to couple light to the edge couplers of the tested devices. By designing the dimensions of the two layers of gratings, the first-order and second-order diffractive lights (reflection) can be cancelled due to destructive interference, which increase the power of vertical coupling. The other end of the probe card is packaged with an optical fiber array connector. A switch is used to control the optical path between the two ports to select different polarizations. We use Lumerical FDTD to design one-dimensional and two-dimensional grating couplers, MMI and edge couplers. The devices are fabricated Taiwan Semiconductor Research Institute (TSRI). We use E-beam lithography to pattern small lines of the grating couplers and use i-Line stepper to pattern the other large-area components. Finally, we do the device measurement and packaging in TSRI and our lab.
The measurement results show the insertion loss of the 1D grating coupler is 5.2dB, and the insertion loss of the 2D grating coupler was 10.83dB. The wafer-level probe card setup was also successfully demonstrated.
1. Taillaert, D., et al., Grating couplers for coupling between optical fibers and nanophotonic waveguides. Japanese Journal of Applied Physics, 2006. 45(8R): p. 6071.
2. Marchetti, R., et al., Coupling strategies for silicon photonics integrated chips. Photonics Research, 2019. 7(2): p. 201-239.
3. Polster, R., et al. Wafer-scale high-density edge coupling for high throughput testing of silicon photonics. in 2018 Optical Fiber Communications Conference and Exposition (OFC). 2018. IEEE.
4. Thomson, D., et al., Low loss MMI couplers for high performance MZI modulators. IEEE Photonics Technology Letters, 2010. 22(20): p. 1485-1487.
5. Wang, F., et al., Optical switch based on multimode interference coupler. IEEE Photonics Technology Letters, 2006. 18(2): p. 421-423.
6. Dai, M., et al., Highly efficient and perfectly vertical chip-to-fiber dual-layer grating coupler. Optics Express, 2015. 23(2): p. 1691-1698.
7. Fan, M., M.A. Popović, and F.X. Kärtner. High directivity vertical fiber-to-chip coupler with anisotropically radiating grating teeth. in Conference on Lasers and Electro-Optics. 2007. Optical Society of America.
8. Sacher, W.D., et al. Ultra-efficient and broadband dual-level Si3N4-on-SOI grating coupler. in CLEO: Science and Innovations. 2014. Optical Society of America.
9. Roelkens, G., D. Van Thourhout, and R. Baets, High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers. Optics letters, 2007. 32(11): p. 1495-1497.
10. Sodagar, M., et al., High-efficiency and wideband interlayer grating couplers in multilayer Si/SiO 2/SiN platform for 3D integration of optical functionalities. Optics express, 2014. 22(14): p. 16767-16777.
11. Watanabe, T., et al., Perpendicular grating coupler based on a blazed antiback-reflection structure. Journal of Lightwave Technology, 2017. 35(21): p. 4663-4669.
12. Chen, X., et al., Apodized waveguide grating couplers for efficient coupling to optical fibers. IEEE Photonics Technology Letters, 2010. 22(15): p. 1156-1158.
13. Chen, X., C. Li, and H.K. Tsang, Fabrication-tolerant waveguide chirped grating coupler for coupling to a perfectly vertical optical fiber. IEEE Photonics Technology Letters, 2008. 20(23): p. 1914-1916.
14. Chen, X., et al. Improving the efficiency of fibre-chip grating couplers near 1310 nm. in 2016 IEEE 13th International Conference on Group IV Photonics (GFP). 2016. IEEE.
15. Nambiar, S., P. Sethi, and S.K. Selvaraja, Grating-assisted fiber to chip coupling for SOI photonic circuits. Applied Sciences, 2018. 8(7): p. 1142.