簡易檢索 / 詳目顯示

研究生: 鄭漢中
論文名稱: 相似性三維零件搜尋機制與應用
3D Similar Part Search and Its Applications
指導教授: 瞿志行
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 158
中文關鍵詞: 三維零件搜尋特徵辨認多層次人類相似認知產品資料管理
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 三維零件相似性計算為設計再利用的關鍵技術,以往研究將三維模型轉化成Shape Signature後,再根據特定的相似度定義進行計算,其結果受限於單一Shape Signature形狀辦識的限制。此外多數文獻著重於完整三維零件的相似度,尚未提出部分相似的搜尋方法,並多以幾何資訊作為計算的依據,未能充分考量人類的認知結果,不能符合實際應用的需求。有鑑於此,本論文提出四個全新的以特徵為基之整合性搜尋機制,首先整合多層次(Level of detail, LOD)的概念,以提供完整/部分相似性的搜尋機制。接著結合特徵辨認與D2分佈圖,克服原本D2分佈圖鑑別能力的不足,提供更精確的比對結果。透過 PDM與CAD的整合,以多Shape Signature建立三維零件搜尋引擎。最後,則將特徵相似因子整合至比對方法中,提供符合人類相似性認知的搜尋方法。本論文亦討論各方法的性質,並比較其優缺點。未來可將所提架構延伸至組立件產品,若能以三維零件的內容為檢索條件,可使搜尋方法更加多元化。本研究著重於設計階段的應用,但亦可推廣至產品生命週期中其他活動之相似性應用。


    摘要 I 誌謝 II 目錄 III 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 研究架構 3 第二章 文獻探討 7 2.1 三維零件搜尋的重要性 7 2.2 三維零件搜尋方式 10 2.3 特徵辨識技術 19 2.4 搜尋績效評估指標 22 第三章 結合多層次概念之搜尋 27 3.1 部分相似之搜尋 27 3.2 多層次為基搜尋整體架構 27 3.3.1 零件製造特徵樹 29 3.3.2 相似性計算演算法 34 3.3.3 人類認知模式 39 3.3 演算法實作與績效評估 47 第四章 結合D2與特徵辨認之比對 54 4.1 D2與CHD的限制 54 4.2 比對整體架構 58 4.2.1 D2樹狀結構圖 60 4.2.2 比對演算法 62 4.3 演算法實作與績效評估 67 4.3.1 演算法設計意義 68 4.3.2 與D2、CHD比較分析結果 70 4.3.3 階層權重設定的影響 75 第五章 多Shape Signature之搜尋 78 5.1 搜尋技術整合問題 79 5.2 演算法整體架構 80 5.2.1 零件Signature建立演算法 80 5.2.2 形狀特徵比對演算法 85 5.3 與PDM/CAD的整合架構 91 5.4 搜尋技術實作與績效評估 93 5.4.1 搜尋引擎系統實作 94 5.4.2 系統測試結果與討論 100 第六章 基於人類製程相似認知之特徵比對 112 6.1 研究步驟 112 6.1.1 特徵相似因子 113 6.1.2 零件與特徵相似因子的Signature 115 6.1.3 特徵比對演算法 119 6.2 演算法實作方式 126 6.3 製程相似性認知實驗 129 6.4 實驗分析與討論 135 第七章 結論與未來方向 142 7.1 結論 142 7.2 未來研究方向 147 參考文獻 149 附錄A 結合D2與特徵辨識之搜尋測試零件 157 附錄B 製程相似實驗之三維零件 158

    [1] Hoque, M., Akter, M. and Monden, Y., “Concurrent Engineering: A Compromising Approach to Develop a Feasible and Customer-Pleasing Product”, International Journal of Production Research, No. 43, pp. 1607-1624, 2005.
    [2] Dowlatshahi, S., "Product Life Cycle Analysis: a Goal Programming Approach," Journal of the Operational Research Society, Vo. 52, No. 11, pp. 1201-1214, 2001.
    [3] Ulrich, K.T. and Eppinger, S.D., Product Design and Development, McGraw Hill, 2000.
    [4] Hatch, M. and Badinelli, R. D., "A Concurrent Optimization Methodology for Concurrent Engineering," IEEE Transactions on Engineering Management, Vol. 46, No. 1, pp. 72-86, 1999.
    [5] Hacker, W., “Improving Engineering Design - Contributions of Cognitive Ergonomics,” Ergonomics, Vol. 40, No.10, pp. 1088-1096, 1997.
    [6] Wood, W. H. and Agogino, A. M., “A Case-based Conceptual Design Information Server for Concurrent Engineering,” Computer-Aided Design, Vol. 28, No. 5, pp. 361-369, 1996.
    [7] Noori, H. and Lee, W., “Collaborative Design in a Networked Enterprise: the Case of the Telecommunications Industry,” International Journal of Product Research, Vol. 42, No. 15, pp. 3041-3054, 2004.
    [8] Chu, C. H. and Cheng, H. C. “Business Model Innovation by Collaborative Product Development: A Case Study of Design Services in Taiwan,” IEEE Industrial Engineering and Engineering Management, Singapore, 2007.
    [9] Jassawalla, A. R. and Sashittal, H. C., “An Examination of Collaboration in High-Technology New Product Development Processes,” Journal of Production Innovation Management, Vol. No. 15, pp. 237-254, 1998.
    [10] Aberdeen Group, “Collaborative Product Commerce: Delivering Product Innovations at Internet Speed,” 1999.
    [11] McIvor, R., Humphreys, P. and Cadden, T., "Supplier Involvement in Product Development in the Electronics Industry: a case study," Journal of Engineering and Technology Management, Vol. 23, No. 4, pp. 374-397, 2006.
    [12] Chu, C. H., Chang, C. J., and Cheng, H. C., “Empirical Studies on Inter-Organizational Collaborative Product Development in Asia Pacific Region,” ASME Journal of Computing & Information Science in Engineering, Vol. 6, No. 2, pp. 179-187, 2006.
    [13] Yang, J. and Lai, F. J., “Harnessing Value in Knowledge Acquisition and Dissemination: Strategic Sourcing in Product Development,” International Journal of Technology Management, Vol. 33, No. 2-3, pp. 299-317, 2006.
    [14] Tanskanen, K., “On-Site Component Selection Support Using WWW,” In: International conference on engineering design, Vol. 2, pp. 243-8, 1997.
    [15] http://www.globalspec.com/.
    [16] Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y. and Ramani, K., “Shape-Based Searching for Product Lifecycle Applications,” Computer-Aided Design, No. 37, pp. 1435–1446, 2005.
    [17] Regli, W.C. and Cicirllo, V.A., “Managing Digital Libraries for Computer-aided Design,” Computer-Aided Design, Vol. 32, pp. 119-132, 2000.
    [18] Rea, H. J., Corney, J. R. and Clark, D. E. R., “Part-Sourcing in a Global Market,” Concurrent Engineering - Research and Applications, Vol. 10, No. 4, pp. 325-333, 2002.
    [19] Song, M., van der Bij, H. and Weggeman, M., “Factors for Improving the Level of Knowledge Generation in New Product Development,” R & D Management, Vol. 36, No. 2, pp. 173-187, 2006.
    [20] Dori, D. and Shpitalni, M., “Mapping Knowledge About Product Lifecycle Engineering for Ontology Construction via Object-Process Methodology,” CIRP Annals-Manufacturing Technology, Vol. 54, No. 1, pp. 117-122, 2005.
    [21] Cardone, G. S. K., and Karnik M., “A Survey of Shape Similarity Assessment Algorithms for Product Design and Manufacturing,” Journal of Computing and Information Science in Engineering, Vol. 3, pp. 109-118, 2003.
    [22] Natraj, I., Subramaniam, J., Kuiyang, L. Yagnanarayanan, K., and Karthik, R. “Three-dimensional Shape Searching: State-of-the-art Review and Future Trends,” Computer-Aided Design, Vol. 37, pp. 509-530, 2005.
    [23] Yang, Y. B., Lin, H., Zhang, Y., “Content-Based 3-D Model Retrieval: A Survey,” IEEE Transaction on System Man and Cybernetics Part C-Application and Reviews, Vol. 37, No. 6, pp. 1081-1098, 2007.
    [24] Elinson, A., Nau, D. S., and Regli, W. C., “Feature-Based Similarity Assessment of Solid Models,” ACM Fourth Symposium on Solid Modeling and Applications, pp.297-310, Atlanta GA USA, 1997.
    [25] Ramesh, M., Yip-Hoi, D., and Dutta, D., “Feature Based Shape Similarity Measurement for Retrieval of Mechanical Parts,” ASME Journal of Computing and Information Science in Engineering, Vol. 1, No. 3, pp. 245–256, 2001.
    [26] Cicirello V. and Regli W. C., “Machining Feature-Based Comparisons of Mechanical Parts,” ACM international conference on shape modeling and applications, Genova, Italy. pp. 176–185; 2001.
    [27] Hong, T., Lee, K. and Kim, S., “Similarity Comparison of Mechanical Parts to Reuse Existing Designs,” Computer-Aided Design, No. 38, pp. 973–984, 2006.
    [28] Perng, D.B. and Chang, C.F., “Resolving Feature Interactions in 3D Part Editing,” Computer-Aided Design, Vol. 29, pp. 687-699, 1997.
    [29] El-Mehalawi, M. and Miller, R.A., “A Database System of Mechanical Components Based on Geometric and Topology Similarity. Part I: Representation,” Computer-Aided Design, Vol. 35, pp. 83-94, 2003.
    [30] El-Mehalawi, M. and Miller, R.A., “A Database System of Mechanical Components Based on Geometric and Topology Similarity. Part II: Indexing, Retrieval, Matching, and Similarity Assessment,” Computer-Aided Design, Vol. 35, pp. 95-105, 2003.
    [31] Sun, T. L., “Shape Similarity Assessment of Polyhedral Parts Based on Boundary Models”, International Journal of Production Research, Vol. 38 No. 18, pp. 4655-4670, 2000.
    [32] Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D., “Shape Distributions,” ACM Transactions on Graphics, Vol. 21, No. 4, pp. 807-832, 2002.
    [33] IP, C.Y., Lapadat, D., Sieger, L., and Regli, W.C., “Using Shape Distributions to Compare Solid Models,” Seventh ACM/SIGGRAPH Symposium on Solid Modeling and Applications, Saarbrucken, Germany, pp. 273-280, 2002.
    [34] Han, J. H., Pratt, M. and Regli, W. C., “Manufacturing Feature Recognition from Solid Models: A Status Report ,” IEEE Transactions on Robotics and Automation, Vol. 16, No. 6, pp. 782-796, 2000.
    [35] Chan, C. K., Tan, S. T., “Volume Decomposition of CAD Models for Rapid Prototyping Technology,” Rapid Prototyping Journal, Vol. 11, No. 4, pp. 221-234, 2005.
    [36] Madurai, S. S., Lin, L., “Rule-Based Automatic Part Feature Extraction and Recognition from CAD Data,” Computers & Industrial Engineering, Vol. 22, No. 1, pp. 49-62, 1992.
    [37] Kulkarni, V. S., and Pande, S. S., “A System for Automatic Extraction of 3D Part Features Using Syntactic Pattern Recognition Techniques,” International Journal of Production Research, Vol. 33, No. 6, pp.1569-1586, 1995.
    [38] Perng, D. B., Chen, Z., and Li, R. K., “Automatic 3D Machining Feature Extraction from 3D CSG Solid Input,” Computer-Aided Design, Vol. 22, No. 5, pp.285-295, 1989.
    [39] Joshi, S., and Chang, T. C., “Graph-based Heuristics for Recognition of Machined Features from a 3D Solid Model,” Computer-Aided Design, Vol. 20, No. 2, pp.58-66, 1988.
    [40] Vandenbrande, J. H., Requicha, A. A. G., “Spatial Reasoning for the Automatic Recognition of Machinable Features in Solid Models,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, Vol.15, pp.1- 17, 1993.
    [41] Wang, M. T., “Manufacturing Feature Extraction and Machined Volume Decomposition in a Computer-Integrated Feature-Based Design and Manufacturing Planning Environment,” Computer in Industry, Vol. 23, pp.75-86, 1993.
    [42] Sakurai, H., “Volume decomposition and feature recognition: part 1-polyhedral objects,” Computer Aided Design, Vol. 27 No. 11, pp. 833-43, 1995.
    [43] Woo, T., "Feature Extraction by Volume Decomposition," Proc. Conf. CAD/CAM Technology in Mechanical Engineering, 1982.
    [44] Kim, Y. S. and Wilde, D. J., “A Convergent Convex Decomposition of Polyhedral Objects,” Journal of Mechanical Design, Vol. 114, No. 3, pp. 468-476, 1992.
    [45] Baeza-Yates, R. and Ribeiro-Neto, B., Modern Information Retrieval, Addison-Wesley Longman, pp. 74-84, 1999.
    [46] Kim, Y. S., “Recognition of Form Features Using Convex Decomposition”, Computer-Aided Design, Vol. 24, No. 9, pp. 461–476, Sep. 1992.
    [47] Waco, D., and Kim, Y. S., “Geometric Reasoning for Machining Features Using Convex Decomposition,” Computer-Aided Design, Vol. 26, No. 6, pp. 477–489, 1994.
    [48] Haykin S., Neural Networks: A Comprehensive Foundation, Prentice Hall, 1999.
    [49] 葉怡成,「應用類神經網路」,儒林圖書公司,1997。.
    [50] 蘇木春、張孝德,「機械學習:類神經網路、模糊系統以及基因演算法則」,全華科技圖書股份有限公司,1999。
    [51] Meireles, M. R. G., Almeida, P. E. M and Simoes, M. G., “A comprehensive review for industrial applicability of artificial neural networks,” IEEE Transactions on Industrial Electronics, Vol. 50, No. 3, pp. 585-601, 2003.
    [52] Hornick, K., Stinchcombe, M. and White, H., “Multilayer Feedforward Networks are Universal Approximators,” Neural Networks, Vol. 2, pp. 359-366, 1989.
    [53] Funahashi, k., ”On the Approximate Realization of Continuous Mappings by Neural Network,” Neural Networks, Vol. 2, pp. 183-192, 1989.
    [54] http://www.mathworks.com/
    [55] Widrow, B., Winter, R. G., and Baxter, R. A., “Learning Phenomena in Layered Neural Networks,” Proceedings of the First IEEE International Conference on Neural Networks, San Diego, Vol. 2, pp. 411-429, 1987.
    [56] http://www.spatial.com/
    [57] Kim, Y. S., Jung, Y. H., Kang, B. G. and Rho, H. M., “Feature-Based Part Similarity Assessment Method Using Convex Decomposition,” Proceedings of 23rd ASME Computers and Information in Engineering Conference, DETC2003/CIE-48184, Chicago, Sep. 2003.
    [58] Rea, H. J., Sung, R., Corney, J. R., Clark, D. E. R. and Taylor, N. K., “Interpreting Three-Dimensional Shape Distribution,” Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, Vol. 219 No. 6, pp. 553-566, 2005.
    [59] Kuhn, K.W., “The Hungarian Method for the Assignment Problem,” Naval Research Logistics, Vol. 2, pp. 83-97, 1955.
    [60] Weber, C., Werner, H. and Deubel, T., “A Different View on Product Data Management/Product Life-Cycle Management and Its Future Potentials,” Journal of Engineering Design, Vol. 14, No. 4, pp. 447-464, 2003.
    [61] Kumar, R. and Midha, P. S., “An Objective Approach for Identifying the Strategic Components of a PDM System,” Industrial Management & Data Systems, Vol. 104, No. 1-2, pp. 56-67, 2004.
    [62] Sackett, P. J. and Bryan, M. G., “Framework for the Development of a Product Data Management Strategy,” International Journal of Operations & Production Management, Vol. 18, No. 1-2, pp. 168-179, 1998.
    [63] Philpotts, M., “An Iintroduction to the Concepts, Benefits and Terminology of Product Data Management,” Industrial Management & Data Systems, Vol. 96, No. 4, pp. 11-21, 1996.
    [64] Booch, G., Rumbaugh, J. and Jacobson, I., The Unified Modeling Language User Guide, Addition-Wesley, 1999.
    [65] Garey, M. R. and Johnson, D. S., Computer and intractability: a guide to the theory of MP-completeness, New York: Freeman, 1979.
    [66] CAA□ Online Help, Dassault.
    [67] SmarTeam□ COM API Reference Guide, Dassault.
    [68] Clark, D. E. R., Corney, J. R., Mill, F., Rea, H. J. and Sherlock, A., “Benchmarking Shape Signatures Against Human Perceptions of Geometric Similarity,” Computer-Aided Design, Vol. 38, No. 9, pp. 1038-1051, 2006.
    [69] Goh, B., “Taguchi Methods: Some Technical, Cultural and Pedagogical Perspectives,” Quality and Reliability Engineering International, Vol. 9, pp.185-202, 1993.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE