研究生: |
亞伯斯 Mohammed Nadhim Abbas |
---|---|
論文名稱: |
Plasmonic nanostructure for photonic integrated circuit 電漿子奈米結構應用於光積體電路 |
指導教授: |
張亞中
Chang, Yia-Chung 曾繁根 Tseng, Fan-Gang |
口試委員: |
魏培坤
Wei, Pei-Kuen 施閔雄 Shih, Min-Hsiung 王智明 Wang, Chih-Ming |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 108 |
中文關鍵詞: | 電漿子 |
外文關鍵詞: | Plasmonics |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The interaction of surface plasmon polaritons on periodic structures is investigated theoretically and experimentally. It is shown that asymmetric T-shaped plasmonic gratings can display plasmon-polariton band structures with wide range of band gaps and tunable group velocities. A structure gap is introduced in the post of T-shaped plasmonic gratings and it is found that the size of this gap plays an important role in controlling the plasmon-polariton band gap and group velocities. We obtained variation of energy band gap ranging from 0.4 eV to 0.0323 eV by changing the size of the structure gap from 0 to 250 nm. We studied the difference between symmetric and asymmetric T-shaped gratings and found that the symmetric structure has a momentum gap in the photonic band structure, which can be avoided in the asymmetric structure. We analyze the structure using Fourier expansion and perform numerical simulation using Rigorous Coupled Wave Analysis (RCWA). A detailed derivation of equations which can be used to control the momentum gap behavior using Fourier transform is given. Furthermore, by varying the post and spacer (made of SiO2) thicknesses we can tune the energy band gap from 0.1 eV to 0.148 eV and from 0.183 eV to 0.19 eV, respectively. In this device, we obtain tunable group velocities ranging from one to several orders of magnitude smaller than the speed of light in the vacuum.
We have found that the plasmon mode can be decupled with light when the upper post is displaced by half a period. Thus, such a structure can be used as plasmonic decupler. Furthermore, by displacing the T-shaped post we can tune the plasmon-polariton band gap and group velocity in a non-monotonic manner. This asymmetric T-shaped plasmonic grating is expected to have applications in surface plasmon polariton (SPP) based optical devices, such as filters, waveguides, splitters and lasers, especially for applications requiring large photonic band gap.
The reflection and thermal radiation properties of a T-shaped array are investigated. The angular dependent reflectance spectrum shows a clear resonant dip at 0.35eV for full polar angles. No other significant localized resonant mode is found in the investigated spectral range from 0.12eV to 0.64eV. According to the Kirchhoff’s law, the thermal radiation of the T-shaped array can lead to a sharp peak at 3.5□m with low sideband emission. We have also found that the T-shaped structure filled with organic material such as PMMA with different thicknesses (10 nm -50 nm) can lead to significant shift of the resonance wavelength. Thus, the T-shaped structure can also be used as a good sensor for organic materials. Also, we have measured the absorbance and reflectance spectra of a T-shaped array by using a Fourier transform infrared (FTIR) spectrometer. This structure can be used as a reflection-type angle-independent band-stop filter. The stop band can also be adjusted by varying the structure geometry. The T-shaped structure is able to offer a single, narrow, angle-independent band stop filter.
The plasmon-polariton band structures of metallic disk structure for both TM and TE polarizations have been investigated. It is shown that the metallic disk structure can be used as an efficient narrow-band thermal emitter in the IR region. The absorption spectra of such structure are investigated both theoretically and experimentally. Calculations of thermal radiation properties of the metallic disk show that the metallic disk is a perfect emitter at a specific wavelength, which can be tuned by varying the diameter of the disk. The metallic disk exhibits only one significant localized surface plasmon polariton mode for both TM and TE polarizations simultaneously. The localized surface plasmon polariton (LSPP) mode can be tuned by either varying the disk diameter or the spacer (made of SiO2)
Spectroscopic ellipsometry (SE) measurements of the specular and off-specular reflection of 1D-PMMA grating on Au-coated glass substrate has been analyzed with efficient theoretical modeling. We obtained a very good agreement between calculation and experiment for both specular and off-specular results. It is found that the resonance peak of the off-specular reflection is much sharper than specular reflection at a wavelength that matches the condition for exciting the interface mode (surface plasmon) resonance. When different media are used as the ambient, we found that the off-specular reflection can give an order of magnitude improvement in detection sensitivity than the corresponding specular reflection. This study may open a new way in terms of far field application such as biosensing. Furthermore, we developed a method to compute quasi photonic band structures for periodic structures with frequency-dependent complex dielectric constants.
1. D. K. Gramotnev, S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit" Nature Photonics 4, 83 - 91 (2010)
2. R. Zia, J. A. Schuller, A. Chandran, M. L. Brongersma, "Plasmonics: the next chip-scale technology" Mater. Today, 9, 20 (2006).
3. E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions" Science 311, 189 (2006)
4. W.L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics" Nature. 424, 824 (2003)
5. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, "Nano-optics of surface plasmon polaritons" Phys. Rep. 408, 131, (2005)
6. S. A. Maier, Plasmonics: Fundamentals and Applications (2007) (New York: Springer)
7. J. Dintinger, O. J. F. Martin, "Channel and wedge plasmon modes of metallic V-grooves with finite metal thickness", Opt. Express 17, 2364-2374 (2009)
8. R. Zia, J. A. Schuller, M. L. Brongersma, "Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides" Phys. Rev. B 74, 165415 (2006)
9. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides" Nat. Mater. 2, 229 (2003)
10. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, M. Soljaĉić, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air" Phys. Rev. Lett. 95, 063901 (2005)
11. J. J. Burke, G. I. Stegeman, T. Tamir, "Surface-Polariton-Like Waves Guided by Thin, Lossy Metal-Films", Phys. Rev B 33, 5186–5201 (1986)
12. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter", Opt. Lett. 22, 475–477 (1997)
13. T. Onuki, Y. Watanabe, K. Nishio, T. Tsuchiya, T. Tani, T. Tokizaki, "Propagation of surface plasmon polariton in nanometre-sized metal-clad optical waveguides" J. Microsc. 210, 284–287 (2003)
14. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, "Non diffraction-limited light transport by gold nanowires" Europhys Lett. 60, 663–669 (2002)
15. K. Tanaka, M. Tanaka, T. Sugiyama, "Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides" Opt. Express 13, 256–266 (2005)
16. L. Liu, Z. Han, S. He, "Novel surface plasmon waveguide for high integration" Opt. Express 13, 6645–6650 (2005)
17. M. Yan, M. Qiu, "Guided plasmon polariton at 2D metal corners" J. Opt. Soc. Am. B 24, 2333–2342 (2007)
18. S. I. Bozhevolyni, V. S. Volkov, E. Devaux, T. W. Ebbesen, "Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves" Phys. Rev. Lett 95, 046802 (2005)
19. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation" Nature Photon. 2, 496–500 (2008)
20. D. F. P. Pile, D. K. Gramotnev, "Plasmonic subwavelength waveguides: next to zero losses at sharp bends" Opt. Lett. 30, 1186–1188 (2005)
21. D. F. P. Pile, D. K. Gramotnev, "Nanoscale Fabry-Perot interferometer using channel plasmon-polaritons in triangular metallic grooves" Appl. Phys. Lett. 86, 161101 (2005)
22. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, M. A. Reed, "Observation of plasmon propagation, redirection, and fan-out in silver nanowires" Nano Lett. 6, 1822–1826 (2006)
23. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators" Nature 440, 508–511 (2006)
24. H. Choi, D. F. Pile, S. Nam, G. Bartal, X. Zhang, "Compressing surface plasmons for nano-scale optical focusing" Opt. Express, 17, 7519–7524 (2009)
25. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. M.-Moreno, F. J. G.-Vidal, E. Devaux, T. W. Ebbesen, "Nanofocusing with Channel Plasmon Polaritons" Nano Lett. 9, 1278–1282 (2009)
26. N. A. Issa, R. Guckenberger, "Optical nanofocusing on tapered metallic waveguides" Plasmonics 2, 31–37 (2007)
27. K. C. Vernon, D. K. Gramotnev, D. F. P. Pile, "Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate" J. Appl. Phys.101, 104312 (2007)
28. K. Kurihara, K. Yamamoto, J. Takahara, A. Otomo, "Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasi-separation of variables" J. Phys. A 41, 295401–295500 (2008)
29. M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, H. A. Atwater, "Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers" Nano Lett. 8, 4048–4052 (2008)
30. J. A. Dionne, K. Diest, L. A. Sweatlock, H. A. Atwater, "PlasMOStor: A Metal-Oxide-Si Field Effect Plasmonic Modulator" Nano Lett. 9, 897–902 (2009)
31. T. Sondergaard, S. Bozhevolnyi, "Slow-plasmon resonant nanostructures: Scattering and field enhancements" Phys. Rev. B 75, 073402 (2007)
32. H. T. Miyazaki, Y. Kurokawa, "Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity" Phys. Rev. Lett. 96, 097401 (2006)
33. J. Zenneck, "Breeding of even electromagnetic waves along an even conducting surface and its relation to radiotelegraphy" Ann. Phys. 23, 846 (1907)
34. R. H. Ritchie, "Plasma Losses by Fast Electrons in Thin Films" Phys. Rev. 106, 874 (1957)
35. D. Pines, D. Bohm, "A Collective Description of Electron Interactions .2. Collective Vs Individual Particle Aspects of the Interactions" Phys. Rev. 85, 338 (1952)
36. D. Pines, "Collective Energy Losses in Solids" Rev. Mod. Phys. 28, 184 (1956)
37. L. Tonks, I. Langmuir, "Oscillations in ionized gases" Phys. Rev. 33, 195 (1929)
38. G. Ruthemann, Naturwiss. 30, 145 (1942); G. Ruthemann, "Diskrete Energieverluste Mittelschneller Elektronen Beim Durchgang Durch Dunne Folien" Ann. Phys. 2, 113 (1948)
39. W. Lang, "Geschwindigkeitsverluste Mittelschneller Elektronen Beim Durchgang Durch Dunne Metallfolien" Optik. 3, 233 (1948)
40. C. J. Powell, J. B. Swan, "Origin of the Characteristic Electron Energy Losses in Aluminum" Phys. Rev. 115, 869 (1959); C. J. Powell, J. B. Swan," Origin of the Characteristic Electron Energy Losses in Magnesium" Phys. Rev. 116, 81 (1959)
41. E. A. Stern, R. A. Ferrell, "Surface Plasma Oscillations of a Degenerate Electron Gas" Phys. Rev. 120, 130 (1960)
42. W. Knoll, "Interfaces and thin films as seen by bound electromagnetic waves" Annu. Rev. Phys. Chem. 49, 569 (1998)
43. S. Herminghaus, J. Vorberg, H. Gau, R. Conradt, D. Reinelt, H. Ulmer, P. Leiderer, M. Przyrembel, "Hydrogen and helium films as model systems of wetting" Ann.Phys. Lpz. 6, 425 (1997)
44. M. Malmqvist, "Biospecific Interaction Analysis Using Biosensor Technology", Nature 361, 186 (1993)
45. R. Berndt, J. K. Gimzewski, P. Johansson, "Inelastic Tunneling Excitation of Tip-Induced Plasmon Modes on Noble-Metal Surfaces" Phys. Rev. Lett. 67, 3796 (1991)
46. M. J. Shea, R. N. Compton, "Surface-Plasmon Ejection of Ag+ Ions from Laser Irradiation of a Roughened Silver Surface" Phys. Rev. B 47, 9967 (1993)
47. R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G. Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms" Science 294, 1901 (2001)
48. G. Flatgen, K. Krischer, B. Pettinger, K. Doblhofer, H. Junkes, G. Ertl, "2-Dimensional Imaging of Potential Waves in Electrochemical Systems by Surface-Plasmon Microscopy" Science 269, 668 (1995)
49. A. R. Mendelsohn, R. Brend, "Protein biochemistry - Protein interaction methods - Toward an endgame" Science 284, 1948 (1999)
50. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures" Science 302, 419 (2003)
51. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. M.-Moreno, F. J. G.-Vidal, T. W. Ebbesen, "Beaming light from a subwavelength aperture" Science 297, 820 (2002)
52. E. N. Economou, "Surface Plasmons in Thin Films" Phys. Rev. 182, 539 (1969).
53. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996), 7th ed.
54. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays" Nature 391, 667-669 (1998)
55. X. Luo, T. Ishihara,"Surface plasmon resonant interference nanolithography technique" Appl. Phys. Lett. 84, 4780-4782 (2004)
56. J. Hashizume, F. Koyama, "Plasmon enhanced optical near-field probing of metal nanoaperture surface emitting laser" Opt. Express. 12, 6391-6396 (2004)
57. W. L. Barnes, "Fluorescence near interfaces: the role of photonic mode density" J. Mod. Opt. 45, 661-699 (1998)
58. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells" Nat. Mater. 3, 601-605 (2004)
59. E. Yablonovitch, "Photonic Band-Gap Crystals" J. Phys. Condens. Matter 5, 2443–2460 (1993)
60. B. Wang, G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces" Appl. Phys. Lett., 87, 013107 (2005)
61. K. Sakoda, "Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals" Opt. Express. 4, 167 (1999)
62. R. Hooper, J. R. Sambles, "Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces" Phys. Rev. B 70, 045421 (2004)
63. A. Kocabas, S. Seckin Senlik, A. Aydinli, "Plasmonic band gap cavities on biharmonic gratings" Phys. Rev. B 77, 195130 (2008)
64. T. Okamoto, J. Simonen, S. Kawata, "Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach" Phys. Rev. B 77, 115425 (2008)
65. A. Kocabas, G. Ertas, S. S. Senlik, A. Aydinli, "Plasmonic band gap structures for surface-enhanced Raman scattering" Opt. Express 16, 12469-12477 (2008)
66. F. Wu, D. Han, X. Hu, X. Liu and J. Zi, "Complete surface plasmon-polariton band gap and gap governed waveguiding, bending and splitting" J. Phys.: Condens. Matter 21, 185010 (2009)
67. C. J. Alleyne, A. G. Kirk, R. C. McPhedran, N.-A. P. Nicorovici, D. Maystre, "Enhanced SPR sensitivity using periodic metallic structures" Opt. Express 15, 8163-8169 (2007)
68. J. E. Heebner, R. W. Boyd, Q. H. Park, "Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide" Phys. Rev. E 65, 036619 (2002)
69. D. M. Beggs, T. P. White, L. O'Faolain, T. F. Krauss,"Ultracompact and low-power optical switch based on silicon photonic crystals" Opt. Lett. 33, 147-149 (2008)
70. M. Sandtke, L. Kuipers, "Slow guided surface plasmons at telecom frequencies" Nat. Photonics 1, 573-576 (2007)
71. A. Kocabas, S. S. Senlik, A. Aydinli, "Slowing Down Surface Plasmons on a Moire Surface" Phys. Rev. Lett. 102, 063901 (2009)
72. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly1, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters" Appl. Phys. Lett. 81, 4685 (2002)
73. C.-W. Cheng, M. N. Abbas, Z.-C. Chang, M. H. Shih, C.-M. Wang, M. C. Wu, Y.-C. Chang, "Angle-independent plasmonic infrared band-stop reflective filter based on the Ag/SiO2/Ag T-shaped array" Opt. Lett. 36, 1440-1442 (2011)
74. S. Wedge, J. A. E. Wasey, W. L. Barnes, and I. Sage, "Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure" Appl. Phys. Lett. 85, 182 (2004)
75. C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, D. P. Tsai, "Reflection and emission properties of an infrared emitter" Opt. Express., 15, 14673-14678 (2007)
76. C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, A. Y. Cho, "Ultra-broadband semiconductor laser" Nature 415, 883-887 (2002)
77. Y. Akahane, T. Asano, B.-S. Song, S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal" Nature 425, 944-947 (2003)
78. Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, S.-C. Lee, "Coupling of surface plasmons in a Ag/SiO2/Ag plasmonic thermal emitter with grating on top Ag" Appl. Phys. Lett. 93, 263106 (2008)
79. C.-M. Wang, Y.-C. Chang, M. N. Abbas, M.-H. Shih, D. P. Tsai, "T-shaped plasmonic array as a narrow-band thermal emitter or biosensor" Opt. Express., 17, 13526-13531 (2009)
80. Y.-W. Jiang, Y.-T. Wu, M.-W. Tsai, P.-E. Chang, D.-C. Tzuang, Y.-H. Ye, S.-C. Lee, "Characteristics of a waveguide mode in a trilayer Ag/SiO(2)/Au plasmonic thermal emitter" Opt. Lett. 34, 3089-3091 (2009)
81. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, Y. Chen, "Coherent emission of light by thermal sources" Nature, 416, 61-64 (2002)
82. M. Laroche, R. Carminati, J. J. Greffet, "Coherent thermal antenna using a photonic crystal slab" Phys. Rev. Lett. 96, 123903 (2006)
83. R. Siegel, J. Howell, Thermal Radiation Heat Transfer (New York: Hemisphere Publishing Corporation, 1981)
84. M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. M.-Neher, W. Knoll, "Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons" Opt. Commun. 168, 117-122 (1999)
85. E. Wolf, "Non-Cosmological Redshifts of Spectral-Lines" Nature 326, 363-365 (1987)
86. E. Wolf, D. F. James, "Correlation-induced spectral changes" Rep. Prog. Phys. 59, 771-818 (1996)
87. L. M.-Moreno, F. J. G.-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays" Phys. Rev. Lett. 86, 1114-1117 (2001)
88. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, H. Giessen, "Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations" Phys. Rev. B. 74, 155435-1-8 (2006)
89. I. I. Smolyaninov, C. C. Davis, J. Elliott, A. V. Zayats, "Resolution enhancement of a surface immersion microscope near the plasmon resonance" Opt. Lett. 30, 382–384 (2005)
90. H. Raether, Surface Plasmons (Springer, 1998)
91. R. Ortuno, C. G.-Meca, F. J. R.-Fortuno, A. Hakansson, A. Griol, J. Hurtado, J. A. Ayucar, L. Bellieres, P. J. Rodriguez, F. L.-Royo, J. Marti, A. Martinez, "Midinfrared filters based on extraordinary optical transmission through subwavelength structured gold films" J. Appl. Phys. 106, 124313 (2009)
92. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, P. M. Echenique, "Theory of surface plasmons and surface-plasmon polaritons" Rep. Prog. Phys. 70, 1 (2007)
93. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, "Formulation for Stable and Efficient Implementation of the Rigorous Coupled-Wave Analysis of Binary Gratings" J. Opt. Soc. Am. A 12, (5), 1068–1076 (1995)
94. L. Li,"Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings" J.Opt. Soc. Am. A 13, 1024–1035 (1996)
95. Y. C. Chang, G. Li, H. Chu, and J. Opsal, “Efficient finite-element, Green’s function approach for critical-dimension metrology of three-dimensional gratings on multilayer films,” J. Opt. Soc. Am. A 23(3), 638–645 (2006).; Y. C. Chang, H. Chu, and J. Opsal, “CD Metrology analysis using Green’s function”, US Patent US6867866B1.
96. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985)
97. W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings" Phys. Rev. B 54, 6227-6244 (1996)
98. H. T. Miyazaki, Y. Kurokawa, "Controlled plasmon resonance in closed metal/insulator/metal nanocavities" Appl. Phys. Lett. 89, 211126 (2006).
99. R. Gordon, "Light in a subwavelength slit in a metal: Propagation and reflection" Phys. Rev. B 73, 153405 (2006)
100. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, N. P. Johnson, "Asymmetric split ring resonators for optical sensing of organic materials" Opt. Express. 17,1107-1115 (2009)
101. D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, "Normal-incidence guided-mode resonant grating filters: Design and experimental demonstration" Opt. Lett. 23, 700 (1998)
102. F. Lemarchand, A. Sentenac, H. Giovannini, "Increasing the angular tolerance of resonant grating filters with doubly periodic structures" Opt. Lett. 23, 1149 (1998)
103. A. L. Fehrembach, A. Talneau, O. Boyko, F. Lemarchand, A. Sentenac, "Experimental demonstration of a narrowband, angular tolerant, polarization independent, doubly periodic resonant grating filter" Opt. Lett. 32, 2269 (2007)
104. Z. Wu, J. W. Haus, Q. Zhan, R. L. Nelson, "Plasmonic notch filter design based on long-range surface plasmon excitation along metal grating" Plasmonics 3, 103 (2008)
105. C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, D. P. Tsai, "Angle-independent infrared filter assisted by localized surface plasmon polariton" IEEE Photonics Technol. Lett. 20, 1103 (2008)
106. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, "Infrared Perfect Absorber and Its Application As Plasmonic Sensor" Nano Lett. 10, 2342 (2010)
107. J. J. Greffet, M. N. Vesperinas, "Field theory for generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchhoff’s law" J. Opt. Soc. Am. A 15, 2735 (1998)
108. M. N. Abbas, Y.-C. Chang, M. H. Shih, "Plasmon-polariton band structures of asymmetric T-shaped plasmonic gratings" Opt. Express 18, 2509 (2010)
109. D. C. O'Shea, T. J. Suleski, A. D. Kathman, D. W. Prather, Diffractive optics: design, fabrication, and test, SPIE Press (2004)
110. H. A. Haus, Waves and fields in optoelectronics, (central book company, Taipei, Taiwan, 1985)
111. B. Kaplan, T. Novikova, A. D. Martino, B. Drevillon, "Characterization of bidimensional gratings by spectroscopic ellipsometry and angle-resolved Mueller polarimetry" Appl. Opt. 43, 1233–1240 (2004)
112. H. Wormeester, E. S. Kooij, A. Mewe, S. Rekveld, B. Poelsema, "Ellipsometric characterisation of heterogeneous 2D layers" Thin Solid Films 455–456, 323–334 (2004)
113. S.-H. Hsu, Y.-C. Chang, Y.-C. Chen, P.-K. Wei, Y. D. Kim, "Optical metrology of randomly-distributed Au colloids on a multilayer film" Opt. Express 2, 18, 1310-1315 (2010).
114. S.-H. Hsu, E.-S. Liu, Y.-C. Chang, J. N. Hilfiker, Y. D. Kim, T. J. Kim, C.-J. Lin, G.-R. Lin, "Characterization of Si nanorods by spectroscopic ellipsometry with efficient theoretical modeling" Phys. Status Solidi A 4, 205, 876–879 (2008)
115. D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, M. Schubert, "Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry" Appl. Phys. Lett. 1, 94, 011914 (2009)
116. Y.-C. Chang, S.-H. Hsu, P.-K. Wei, Y. D. Kim, "Optical nanometrology of Au nanoparticles on a multilayer film" Phys. Status Solidi C 5, 5, 1194–1197 (2008)