研究生: |
陳冠宇 Chen, Kuan-Yu |
---|---|
論文名稱: |
二維奈米電漿光子晶格中粒子的傳輸與捕捉行為 Transport and trapping in two-dimensional nanoscale plasmonic optical lattice |
指導教授: |
楊雅棠
Yang, Ya-Tang |
口試委員: |
張之威
黃哲勳 楊雅棠 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 光學鑷子 、繞射極限 、電漿子 、表面電漿 、傳輸 、捕捉 、二維陣列 、二維光晶格 、六角最密堆積 |
外文關鍵詞: | optical tweezer, diffraction limit, plasmonics, surface plasmon, transport, trapping, two-dimensional array, two-dimensional optical lattice, hexagonal closed pack crystalline |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,光學鑷子技術的發展,創建了各種維度的週期性位勢來影響粒子的 行為。由於傳統光學鑷子的繞射極限限制,要將實驗尺度縮小到奈米等級極為困 難。近年來,電漿子光學捕捉可以克服傳統光學鑷子的繞射極限,其表面電漿可 以在遠低於繞射極限下經由共振增強光學強度。本論文研究了直徑 100 nm 與 500 nm 粒子於電漿子加強的二維光晶格中的傳輸以及捕捉行為。本實驗之光晶 格位勢是由金結構的二維陣列所組成,且由高斯雷射光束所激發共振,在此光晶 格的位勢中,奈米粒子會被引導、捕捉以及排列於此二維陣列當中。我們同樣清 楚觀察到粒子排列成六角最密堆積結構於此二維奈米電漿光晶格陣列中。本論文 會詳細介紹光學鑷子的架設以及電漿子結構的製程與計算,最後討論粒子於結構 中的行為。
Recently, optical tweezers has been created various dimensions of periodic potential lattice for affecting the behavior of particles. According to the limitation of diffraction limit, it is difficult to shrink the experiment into nanoscale. In recent, plasmanic enhanced optical trapping can overcome the limitation of traditional optical tweezers because the surface plasmon concentrate light far below the diffraction limits and enhance optical intensity by resonance. In this thesis, we research the transport and trapping behavior of nanospheres of diameter 500 nm and 100 nm in two-dimensional nanoscale plasmanic optical lattice. Optical potential of the lattice is created by a two-dimensional of gold nanostructure array, and the plasmon resonance is illuminated by Gaussian beam. We observe the transport and trapping behavior of nanospheres in this optical potential. The stacking of diameter 500 nm spheres into hexagonal closed pack crystalline in this potential is also observed clearly. In this thesis, we introduce the setup of optical system clearly and make an explanation about the calculation and fabrication process of plasmonic structures.
[1] Risken, H., The Fokker-Plank Equation 2nd Ed., Berlin: Springer, 1984.; Astumian R. D. Thermodynamics and kinetics of a brownian moter. Science 1997, 276, 917-922.
[2] Ashkin, A.; Dziedzic, J. M.; Bjorkholm, J. E.; Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 1986, 11, 288–290.
[3] Grier, D. A revolution in optical manipulation. Nature 2003, 424, 810–816.
[4] Neuman, K. C.; Block S. M. Optical trapping. Rev. Sci. Instrum. 2004, 75, 2787–2809.
[5] Dholakia, K.; Reece, P. Optical micromanipulation takes hold. Nano Today 2006, 1, 18–27
[6] Faucheaux, L. P.; Bourdieu, L. S.; Kaplan, P. D.; Libchaber, A. J. Optical thermal ratchet, Phys. Rev. Lett., 1995, 74, 1504-1507.
[7] Tatarkova, S. A.; Sibbett, W.; Dholakia, K. Brownian particle in an optical potential of the washboard type. Phys. Rev. Lett. 2003, 91, 038101.
[8] Korda, P. T.; Taylor, M. B.; Grier, D. G. Kinetically locked-in colloidal transport in an array of optical tweezers. Phys. Rev. Lett. 2002, 89, 128301.
[9] Ladavac, K.; Kasza, K.; Grier, D. G. Sorting mesoscopic objects with periodic potential landscapes: optical fractionation. Phys. Rev. E. 2004, 70, 010901.
[10] MacDonald, M. P. et al. Creation and manipulation of three dimensional optically trapped structure. Science 2003, 296, 1101-1103.
[11] MacDonald, G. C.; Spalding, G. C.; K. Dholakia Microfluidic sorting in an optical lattice. Nature, 2003, 426, 421-424.
[12] Burns, M. M.; Fournier, J. M.; Golvochenko J. A. Optical matter crystallization and binding in intense optical field. Science, 1990, 249, 749-754.
[13] Wright, W. H.; Sonek, G. J.; Berns, M. W. Radiation trapping forces on microspheres with optical tweezers. Appl. Phys. Lett., 1993, 63, 715-717.
[14] Kawata, S.; Tani, T.; Optically driven Mie particles in an evanescent field along a channel waveguide. Opt. Lett. 1996, 21, 1768-1770.
[15] Yang, A. H. J.; Moore, S. D.; Schmit, B. S.; Klug, M.; Lipson, M.; Erickson, D. Optical Manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 2009, 457, 71-75.
[16] Lin, S.; Schonbrun, E.; Crozier, K. Optical manipulation with planar silicon microring resonators. Nano Lett. 2010, 10, 2408-2411.
[17] Lin, S.; Crozier, K. Planar silicon microrings as wavelength-multiplexed optical traps for storing and sensing particles. Lab Chip 2011, 11, 4047-4051.
[18] Mandal, S.; Serey, X.; Erickson, D. Nanomanipulation using silicon photonic crystal resonators. Nano Lett 2010, 10, 99-104.
[19] Novotny, L.; Hecht, B. Principle of Nano Optics, 2nd Ed. Cambridge: Cambridge University Press, 2012.
[20] Juan, M. L.; Gordon, R.; Pang, Y.; Eftekhari, F.; Quidant, R. Plasmon nano optical tweezer. Nat. Photonics 2009, 5, 915−919.
[21] Novotny, L.; Bian, R. X.; Xie, X. S. Theory of nanometric optical tweezers. Phys. Rev. Lett. 1997, 79, 645-648 .
[22] Garceś -Chávez, V.; Quidant, R.; Reece,P. J.;Badenes, G.;Torner, L.; Dholakia, K. Extended organization of colloidal microparticles by surface plasmon polariton excitation. Phys. Rev. B 2006, 73, 085417.
[23] Volpe, G.; Quidant, R.; Badenes, G.; Petrov, D. Surface plasmon radiation forces. Phys. Rev. Lett. 2006, 96, 238101.
[24] Righini, M.; Zelenina, A. S.; Girard, C.; Quidant, R. Parallel and selective trapping in a patterned plasmonic landscape. Nature Phys. 2007, 3, 477–480.
[25] Righini, M.,; Volpe, G.; Girard, C.; Petrov, D.; Quidant, R. Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. Phys. Rev. Lett. 2008, 100, 183604.
[26] Zhang, W.; Huang, L.; Santschi, C.; Martin, O. J. F. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano Lett. 2010, 10, 1006–1011.
[27] Pang, Y.; Gordon, R. Optical trapping of 12nm dielectric spheres using double-nanoholes in a gold film. Nano Lett. , 2011, 11, 3763−3767.
[28] Pang, Y.; Gordon, R. Optical trapping of single protein. Nano Lett., 2012, 12, 402−406.
[29] Stockman, M. L. Spaser action, loss compensation, and stability in plasmonic systems with Gain. Phys. Rev. Lett. 2011, 106, 156802.
[30] Huang, L.; Maerkl, S. J.; Martin, O. J. F. Integration of plasmonic trapping in a microfluidic environment. Opt. Express 2009, 17, 6018–6024.
[31] Johnson, P. B.; Christy, R. W. Optical Constants of the Noble Metals. Phys. Rev. Lett. 1963, 11, (541)
[32] Reif, F., Fundamentals of Statistical and Thermal Physics 1st Ed., New York: McGraw- Hill, 1965.; Kestin, J.; Sokolv, M.; Wakeham, W. A. Viscosity of liquid water in the range -8 oC to 150 oC. J. Phys. Chem. Ref. Data, 1978, 7, 941-948.
[33] Reimann, P.; Van der Broeck, C.; Linke, H.; Hanggi, P.; Rubi J. M.; Perez-Madrid, A. Giant acceleration of free diffusion by use of tilted periodic potentials, Phys. Rev. Lett. 2001, 87, 010602.
[34] Roepstorff, G., Path Integral Approach to Quantum Physics 1st Ed., Berlin: Springer, 1991.
[35] Lin, K-H.; Crocker J. C., Prasad, V.; Schofield, A.; Weitz, D. A.; Lubensky, T. C.; Yodh, A. G. Entropically driven colloidal crystallization on patterned surfaces. Phys. Rev. Lett., 2000, 85, 1770-1773.
[36] Balykin, V. I.; Letokhov, V. S.; Klimov, V. V. Atom nano-optics. Opt. Photon. News 2005, 16, 44–48.
[37] Klimov, V. V.; Sekatskii, S. K.; Dietler, G. Laser nanotraps and nanotweezers for cold atoms: 3D gradient dipole force trap in the vicinity of scanning near-field optical microscope tip. Opt. Commun. 2006, 259, 883–887.
[38] Chang, D. E. et al. Trapping and manipulation of isolated atoms using nanoscale plasmonic structures. Phys. Rev. Lett. 2009, 103, 123004.
[39] Kern, J.; Großmann, S.; , Tarakina, N. V.; Häckel T.; Emmerling, M.; Kamp, M.; Huang, J. S.; Biagioni, P.; Prangsma, J. C.; Hecht, B. Atomic-scale confinement of resonant optical fields. Nano Lett. 2012, 12, 5504-5509.
[40] Wang, K.; Schonbrun, E.; Steinvurzel, P.; Crozier, K. B. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink Nature Communication, 2011, 2, 10.1038.