簡易檢索 / 詳目顯示

研究生: 劉思婕
Liu, Szu-Chieh
論文名稱: 適用於表面聲波感測器陣列之低基底雜訊連續式多通道介面電路
A Continuous Multi-Channel Interface Circuit with Low Substrate Noise for Surface Acoustic Wave Sensor Array
指導教授: 鄭桂忠
Tang, Kea-Tiong
口試委員: 林啟萬
Lin, Chii-Wann
饒達仁
Yao, Da-Jeng
謝秉璇
Hsieh, Ping-Hsuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 122
中文關鍵詞: 表面聲波感測器感測器陣列多通道介面電路低基底雜訊
外文關鍵詞: Surface Acoustic Wave, Sensor Array, Multi-Channel Interface Circuit, Low Substrate Noise
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電子鼻系統主要分為三個部分,依序為氣體感測器、介面電路與訊號處理。其中表面聲波感測器為常見電子鼻系統感測器。本論文中所提到的表面聲波感測器包含了表面聲波感測元件以及提供其相位與增益的震盪電路。單一顆表面聲波感測器,可以經由量測其輸出頻率變化量感測有無氣體通入。我們在表面聲波感測器上旋佈高分子化學薄膜,可以增加感測器對於特定氣體感測的靈敏度,將旋佈不同高分子薄膜的感測器組成氣體感測器陣列可以做為氣體辨識使用。
    當表面聲波感測器同時起震的時候,基底注入電流頻率成份增加,因此表面聲波感測器經由基底電流產生互相干擾的現象。當互相干擾的情形愈來愈嚴重時,將會影響表面聲波感測器的靈敏度,因為干擾會造成表面聲波感測器的中心頻率產生飄動,而當頻率飄動量過大時,感測器與氣體的反應量將會被雜訊值所掩蓋。本論文著重於降低感測器之間的雜訊,使用Deep N-well將NMOS的基底分開,藉此降低震盪器經由基底產生干擾,經由量測結果可以得到雜訊約有5db的下降量。
    一般而言,表面聲波感測器陣列介面電路是採用非連續式的架構,雖然可以降低感測器之間的干擾情形,但是會有資料量不連續的缺點,對於後端的資料處理也比較麻煩。相反的,連續式的架構擁有資料完整的特性,但是介面電路的雜訊處理就變得很重要。本論文針對類比式低雜訊連續式表面聲波感測器介面電路做設計,其中包含了頻率混波器,低通濾波器、類比多工器以及週期計數電路,因為通道之間的切換為雜訊主要的來源,因此我們設計了低雜訊的類比多工器,並且提出了間隔切換的想法來降低通道之間的干擾。最後因為考慮到之後資料的處理,我們將輸出訊號處理成數位訊號。本論文使用TSMC 0.18μm 1P6M製成來實現整個系統,數位電路我們採用1V的電壓,而類比電路的部份我們使用1.8V的電壓。
    晶片我們分兩個部份做量測,首先我們先使用理想的訊號作為輸入,量測電路的一些基本特性;接著我們再使用表面聲波感測器作為訊號輸入。最後表面聲波感測器震盪電路輸出中心頻率為113.76MHz,輸出功率為-1.7419dbm,且在1MHz時的相位雜訊為-123.2316dbc/Hz。頻率混波器的輸出誤差經由量測的到的結果都在1%以下,且輸出的頻率範圍可以從0.002Hz~1.9MHz。我們對類比多工器的輸出做傅立葉轉換,得到間隔輸出的結果確實可以降低通道之間的雜訊,且輸出的duty cycle rate範圍在47%~53%之間。最後我們將類比訊號轉換成數位的形式做輸出,便於後端做訊號處理。


    Electronic nose (E-Nose) is one of the applications for surface acoustic wave (SAW) sensors. In general, the SAW sensor consists of a passive element (LiNbO3 and IDTs) and an oscillator circuit. A SAW sensor array is formed to construct the odor patterns for gas recognition. The injection current through the substrate seriously affect the performance of the SAW sensors. If the number of the SAW sensors increases, more injection current would raise the output noise level of the SAW sensors. This will affect the sensitivity of the SAW sensor because the frequency change from the SAW sensor is very small at sensing low concentration gas. In the previous works, asynchronous types SAW sensor array system have been developed to implement a portable E-Nose to reduce the interference between sensors. However, the data acquired from the asynchronous type SAW sensor array system is not continuous, thus it is not suitable for further analysis. In contrast, synchronous type SAW sensor array system has the advantage of data integrity. In this paper, we focus on the design of low substrate noise synchronous type SAW sensor array system. We used deep N-Well to separate the substrates of NMOS transistors to reduce the injection noise from the substrates between sensors. The system was implemented by an application-specific integrated circuit (ASIC) that converted the analog sensor signal into digital. The proposed circuit has been fabricated by TSMC 0.18μm 1P6M CMOS process technology. The chip operated at 1V supply voltage for digital circuits and 1.8V for analog circuits, respectively.

    第一章 緒論 1.1. 前言 1.2. 研究動機與目標 1.3. 章節簡介 第二章 文獻回顧 2.1. 表面聲波感測器與表面聲波感測器陣列 2.2. 表面聲波感測器震盪電路 2.3. 表面聲波感測器陣列介面電路 第三章 表面聲波感測器基本理論及參數 3.1. 壓電現象的發展 3.2. 壓電效應 3.3. 壓電材料種類 3.4. 指叉式電極換能器 3.5. 表面聲波感測器 3.5.1. 表面聲波感測元件 3.5.2. 溫溼度影響 3.5.3. 質量負載效應 3.5.4. 頻率飄移效應與規一化 3.6. 表面聲波感測器穩定性測試 3.7. 表面聲波感測器陣列 3.7.1. 化學薄膜 3.7.2. 表面聲波感測器陣列 第四章 干擾源分析 4.1. 電磁干擾 4.2. 電源干擾 4.3. 基底訊號雜訊干擾 4.4. 相位雜訊與時域抖動關係分析 4.4.1. 震盪器的重要參數 4.4.2. 相位雜訊與頻率飄動量關係 第五章 表面聲波感測器陣列介面電路設計 5.1. 設計考量與理論 5.1.1. 設計考量 5.1.2. 設計理論 5.2. 電路系統架構 5.3. 表面聲波感測器震盪電路 5.3.1. 震盪器原理 5.3.2. 互補式交叉耦合對原理(CMOS cross-coupled pair) 5.3.3. 表面聲波感測器震盪電路設計考量 5.3.4. 低基底雜訊表面聲波感測器 5.4. 連續式類比多通道表面聲波感測器陣列介面電路 5.4.1. 架構原理介紹 5.4.2. 頻率混波器(Mixer)與低通濾波器(Low-Pass Filter) 5.4.2.1.頻率混波器設計理念 5.4.2.2.頻率混波器原理與設計 5.4.2.3.低通濾波器設計理念 5.4.2.4.低通濾波器原理與設計 5.4.3. 類比多工器(Analog Multiplexer) 5.4.3.1.類比多工器設計理念 5.4.3.2.類比多工器的原理與設計 5.4.4. 週期計數電路 5.4.4.1.週期計數電路設計理念 5.4.4.2.週期計數電路的原理與設計 5.4.5. 參考感測器中心頻率讀取電路 第六章 電路模擬與佈局 6.1. 模擬結果 6.1.1. 低基底雜訊表面聲波感測器 6.1.2. 多通道的頻率讀取電路 6.1.2.1.頻率混波器與低通濾波器 6.1.2.2.類比多工器 6.1.2.3.週期計數電路 6.1.2.4.參考感測器中心頻率讀取電路 6.2. Layout 佈局 6.3. 預定規格 6.3.1. 表面聲波感測器震盪電路 6.3.2. 連續式類比多通道表面聲波感測器陣列介面電路 6.4. 文獻比較 6.4.1. 表面聲波感測器震盪電路 6.4.2. 連續式類比多通道表面聲波感測器陣列介面電路 第七章 量測結果分析與討論 7.1. 量測環境與考量 7.1.1. 表面聲波感測器震盪電路 7.1.2. 連續式類比多通道表面聲波感測器陣列介面電路 7.2. 量測結果與討論 7.2.1. 表面聲波感測器震盪電路 7.2.2. 連續式類比多通道表面聲波感測器介面電路 7.2.3. 表面聲波感測器與介面電路量測 7.2.4. 表面聲波感測器陣列介面電路氣體量測 7.2.4.1.表面聲波感測器陣列與介面電路穩定性測試 7.2.4.2.表面聲波感測器陣列與介面電路酒精氣體量測 第八章 未來展望

    [1] J. Castrellon-Uribe, M.E.Nicho, and G. Reyes-Merino, "Remote optical detection of low concentrations of aqueous ammonia employing conductive polymers of polyaniline," Sensors and Actuators B:Chemical, Vol.141, Issue 1, pp.40-44, August 2009.
    [2] T.H. Lee, A. Hajimiri, "Oscillator phase noise: a tutorial," IEEE Journal of Solid-State Circuits, Vol.35, No.3, pp.326-336, March 2000.
    [3] T. Yoshimura, A. Iwata, "A study of interference in synchronous systems," IEEE
    Transactions on Circuits and Systems I:Regular Papers, Vol.53, No.8, pp.1726-1740, August 2006.
    [4] W. Jakubik, M. Urbańczyk, A. Opilski, "Sensor properties of lead phthalocyanine in a surface acoustic wave system," Ultrasonics, Vol.39, pp.227-232, 2001.
    [5] W. Wen, H. Shitang, L. Shunzhou, L. Minghua, P. Yong, "Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator," Sensors and Actuators B:Chemical, Vol.125, Issue 2, pp. 422-427, August 2007.
    [6] J.P. Santos, M.J. Fernández, J.L. Fontecha, J. Lozano, M. Aleixandre, M. García, J.Gutiérrez, M.C. Horrillo, "SAW sensor array for wine discrimination," Sensorsand Actuators B: Chemical, Vol.107, Issue 1, pp. 291-295, May 2005.
    [7] M. Rapp, J. Reibel, A. Voigt, M. Balzer, O. Bülow,"New miniaturized SAW-sensor array for organic gas detection driven by multiplexed oscillators," Sensors and Actuators B: Chemical, Vol.65, Issues 1-3, pp.169-172, June 2000.
    [8] M.Furuhata, A.Yajima, K.Goto, H.Sato, T.Funasaka, S.Kawano, S.Fujii, T. Higuchi, M. Ueno, T. Karaki, M. Adachi,"Development of monolithic CMOS-SAW oscillator," IEEE Ultrasonics Symposium, Vol.4, pp.2194-2197, September 2005.
    [9] A.N. Nordin, M. Zaghloul, C. Korman, S. Ahmadi,"CMOS surface acoustic wave oscillators," IEEE Midwest Symposium on Circuits and Systems, Vol.1, pp.607-610, August 2005.
    [10] K. Yao Huang, W. I Jhih, "Balanced SAW oscillators with cross-coupled CMOS pair," IEEE International New Circuits and Systems Conference, pp.518-521, June 2011.
    [11] 陳玫菁, "表面聲波氣體感測器應用於低濃度氨氣偵測與集群分析辨識。"
    [12] 蕭甄昀,"中孔洞鉑釕空心奈米球及中孔洞空心碳球的合成製備及電催化和感測器的應用。"
    [13] B.G. Defilippi, W. San Juan, H. Valdés, M.A. Moya-León, R. Infante, R. Campos-Vargas,"The aroma development during storage of Castlebrite apricots as evaluated by gas chromatography, electronic nose, and sensory analysis," Postharvest Biology and Technology, Vol. 51, Issue 2, pp.212-219, February 2009.
    [14] C. Campbell, "Surface Acoustic Wave Devices and Their Signal Processing Applications," Academic Press, 1989.
    [15] 吳朗, "電子陶瓷/壓電: 全欣資訊", 1994.
    [16] 邱碧秀, "電子陶瓷材料: 徐氏基金會", 1988.
    [17] B. Razavi, Fellow, IEEE, "A study of injection locking and pulling in oscillators," IEEE Journal of Solid-State Circuits, Vol.39, No.9, pp.1415-1424, September 2004.
    [18] C. Soens, G. Van der Plas, P. Wambacq, S. Donnay, M. Kuijk, "Performance degradation of LC-tank VCOs by impact of digital switching noise in lightly doped substrates," IEEE Journal of Solid-State Circuits, Vol.40, No.7, pp.1472-1481, July 2005.
    [19] N. Checka, D.D. Wentzloff, A. Chandrakasan, Reif, Rafael, "The effect of substrate noise in VCO performance," IEEE Radio Frequency Integrated Circuits Symposium ,pp.523-526, June 2005.
    [20] W. Shen-Sz, W. Yu-Chen, Shawn S.S.H.Hsu, and C. Chih-Yuan, "Substrate Coupling Effect Under Various Noise Injection Topologies in LC-Voltage Controlled Oscillator," IEEE Radio Frequency Integrated Circuits Symposium, pp.705-708, June 2007.
    [21] Feng Tan, Xianhe Huang, Wei Wei, Wei Fu, "Analysis of Phase Noise and Timing Jitter in Crystal Oscillator," IEEE International Conference on Communications, Circuits and Systems, pp.1103-1106, July 2007.
    [22] M.S. McCorquodale, D. Mei Kim, R.B. Brown, "Study and simulation of CMOS LC oscillator phase noise and jitter," IEEE International Symposium on Circuits and Systems, Vol.1, pp.I-665-I-668, May 2003.
    [23] 尤致捷, "低電壓低功耗基底偏壓之壓控震盪器與高轉換增益基底注入式混頻器設計。"
    [24] S. Abdelkader, M. Omar and M. Dessouky, "1-V, high speed,low leakage CMOS CML multiplexer," IEEE International Symposium on Circuits and Systems, pp.3154-3157, May 2009.
    [25] P. Jin-Hyoung, S. Ji-Seop, L. Shin-Il, K. Suki, "A high speed and low power 4:1 multiplexer with cascoded clock control," IEEE Asia Pacific Conference on Circuits and Systems, pp.316-319, December 2010.
    [26] L. Jon-Hong, K. Nai-Yuan and K. Yao-Huang. "A Low Phase Noise CMOS Voltage-Controlled SAW Oscillator for OC-192 Applications," IEEE Asia-Pacific Microwave Conference, pp.1-4, December 2007.
    [27] F.M. Yasin, K.F. Tye, M.B.I. Reaz, "Design and implementation of interface circuitry for CMOS-base SAW gas sensors," IEEE International SOC Conference, pp.161-164, September 2005.
    [28] M. Moghavvemi, A. ATTARAN, "Design of a Low Voltage 0.18um CMOS Surface Acoustic Wave Gas sensor," Sensors & Transducers Journal, vol.125, Issue 2, pp. 22-29, February 2011.
    [29] F. Cenni, J. Cazalbou, S. Mir, L. Rufer, "Design of A SAW-based chemical sensor with its microelectronics front-end interface," Microelectronics Journal, Vol.41, Issue 11, pp.723-732, November 2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE