簡易檢索 / 詳目顯示

研究生: 鄭名延
Cheng, Ming-Yen
論文名稱: 三維晶片時脈樹抗變化的設計合成
3D Variation-Aware Clock Tree Synthesis
指導教授: 張世杰
Chang, Shih-Chieh
口試委員: 王廷基
吳文慶
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 28
中文關鍵詞: 三維時脈樹矽晶穿孔容錯設計時序差異功率消耗
外文關鍵詞: 3D clock network, 3D clock tree, power consumption
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在三維晶片的相關研究中,矽晶穿孔的可靠性逐漸地變得愈來愈重要,由於矽晶穿孔的損壞機率愈高愈易造成更多的晶片無法使用。因此,在先期的研究中提出了一個新的矽晶穿孔容錯設計,它增強了三維晶片時脈樹對矽晶穿孔的容錯。然而此矽晶穿孔容錯設計中所增添的延遲緩衝器可能產生大量的功率消耗。
    在這篇論文中,我們提出了兩種方法來解決矽晶穿孔容錯設計中延遲緩衝器對晶片造成的負擔。第一種方法,藉由分析時脈訊號的延遲,運用線性規劃來重新調整延遲緩衝器的大小。第二種方法,在晶穿孔容錯設計中插入橫跨兩子樹的導線(crosslink),進一步的降低延遲緩衝器的大小並對電路提供抗變化的能力。實驗數據顯示,我們的方法相對於先期的研究,確實能有效降低電路功率的消耗且更能抗變化。


    The reliability of through-silicon via (TSV) is becoming increasingly important in 3D ICs. Since the higher failure rate of TSV in clock tree yields more bad chips. Accordingly, the previous work proposes a novel TSV fault-tolerant unit (TFU), which can provide tolerance against TSV failure in a 3D clock network. However, the TFU structure’s additional buffers could take considerable power consumption. Also, the TFU structure
    In this thesis, we present two methodologies to resolve the TFU delay buffer overhead. (1) Analyze clock signal delay and resize the TFU’s delay buffers by linear programming. (2) Insert crosslink in TFU to achieve further buffer sizing and provide variation tolerance. Experimental results demonstrate that our methodologies make the circuit have lower power consumption and better variation tolerance compared with the previous work.

    Abstract.................................2 List of Contents.........................3 List of Figures..........................4 List of Tables...........................5 Chapter 1 Introduction...................6 Chapter 2 Preliminaries..................9 2.1 TSV Fault-tolerant Unit (TFU).......9 2.2 Crosslink Insertion................12 Chapter 3 Proposed Methodology..........14 3.1 LP Analysis and Optimization.......15 3.2 Crosslink Insertion Algorithm......17 Chapter 4 Experimental Results..........20 4.1 Experimental Setup.................20 4.2 Result Analysis....................21 Chapter 5 Conclusions...................24 Reference...............................25

    [1]C. Albrecht, A. B. Kahng, B. Liu, I. I. Mandoiu, and A. Z. Zelikovsky. 2003. On
    the skew-bounded minimum-buffer routing tree problem. IEEE Trans. CAD. 22, 7 (Jul. 2003), 937–945.
    [2]V. Arunachalam and W. Burleson. 2008. Low-power clock distribution in a multilayer core 3d microprocessor. In Proceedings of GLSVLSI. 429–434.
    [3]J. Cong, A. B. Kahng, and G. Robins. 1993. F Matching-based methods for high-performance clock routing. IEEE Trans. CAD. 12, 8 (Aug. 1993), 1157–1169.
    [4]W. R. Davis et al. 2005. Demystifying 3d ics: the pros and cons of going vertical. IEEE Design and Test of Computers. 22, 6 (Nov. 2005), 498–510.
    [5]M. Edahiro. 1994. An efficient zero-skew routing algorithm. In Proceedings of DAC. 375–380.
    [6]A. C. Hsieh, T. T. Hwang, M. H. Chang, M. H. Tsai, C. M. Tseng, and H. C. Li. 2010. TSV redundancy: architecture and design issues in 3D IC. In Proceedings of DATE. 1206–1211.
    [7]S. Hu, C. J. Alpert, J. Hu, S. K. Karandikar, Z. Li, W. Shi, and C. N. Sze. 2007. Fast algorithms for slew-constrained minimum cost buffering. IEEE Trans. CAD. 26, 11 (Nov. 2007), 2009–2022.
    [8]U. Kang et al. 2009. 8Gb 3D DDR3 DRAM using through-silicon-via technology. IEEE ISSCC. 130–132.
    [9]M. Kawano et al. 2006. A 3D packaging technology for 4 Gbit stacked DRAM with 3 Gbps data transfer. IEDM Dig. Tech. Papers. 581-584.
    [10]T.-Y. Kim, and T. Kim. 2010. Clock tree synthesis with pre-bond testability for 3D stacked IC designs. In Proceedings of DAC. 184–190.
    [11]M. Laisne, K. Arabi, and T. Petrov. 2010. System and methods utilizing redundancy in semiconductor chip interconnects. United State Patent Application Publication. US 20100060310A1 (Mar. 11, 2010).
    [12]D. L. Lewis and H.-H. S. Lee. 2007. A scan-island based design enabling pre-bond testbility in die-stcked microprocessors. In ITC. 1–8.
    [13]I. Loi , S. Mitra , T. H. Lee , S. Fujita , L. Benini. 2008. A low-overhead fault tolerance scheme for TSV-based 3D network on chip links. In Proceedings of ICCAD. 598–602.
    [14]J. Minz, X. Zhao, and S. K. Lim. 2008. Buffered clock tree synthesis for 3D ICs under thermal variations. In Proceedings of ASPDAC. 504–509.
    [15]M. Mondal, and et al. 2007. Thermally robust clocking schemes for 3D integrated circuits. In Proceedings of DATE. 1206–1211.
    [16]A. Papanikolaou, and et al. 2006. Reliability issues in deep deep sub-micron technologies: time-dependent variability and its impact on embedded system design. IEDM. 342–347.
    [17]V. F. Pavlidis, I. Savidis, and E. G. Friedman. 2008. Clock Distribution Networks for 3-D Integrated Circuits. In IEEE Custom Intergrated Circuits Conference. 651-654.
    [18]Geert Van der Plas et al. 2010. Design issues and considerations for low-cost 3D TSV IC technology. In IEEE ISSCC. 148–150.
    [19]A. W. Topol, and et al. 2006. Three-dimensional integrated circuits. IBM Journal of Research and Development. 50, 4/5 (Jul./Sep. 2006), 491–506.
    [20]H. Yoshikawa et al. 2009. Chip-scale camera module (CSCM) using through-silicon-via (TSV). In IEEE ISSCC. 476–477.
    [21]X. Zhao, D. L. Lewis, H.-H. S. Lee, and S. K. Lim. 2009. Pre-bond testable low-power clock tree design for 3D stacked ICs. In Proceedings of ICCAD. 184–190.
    [22]C.-L. Lung, Y.-S. Su, S.-H. Huang,S.-C. Chang. Fault-Tolerant 3D Clock Network. In DAC, pages 645–651, 2011
    [23]R. Patti, “Impact of wafer-level 3D stacking on the yield of ICs,” in Future Fab
    Intl,September2007 .[Online].Available:http://www.futurefab.com/documents.asp?d_ID=4415
    [24]Anand Rajaram, Jiang Hu, and Rabi Mahapatra. Reducing clock skew variability via cross links. In Proceedings of the 41st annual conference on Design automation, pages 18–23. ACM Press, 2004.
    [25]G. Venkataraman, N. Jayakumar, J. Hu, P. Li, S. Khatri,A. Rajaram, P.McGuinness, and C. Alpert, “Practical Techniques for Minimizing Skew and Its Variation in Buffered Clock Networks,” in Proc. of the ICCAD, San Jose, CA, pages 592-596, November 2005.
    [26]P. K. Chan and K . Karplus, “Computing signal delay in general rc network by treeilink partitioning,” IEEE Trans. Computer-Aided Design, vol. 9, pp. 898-902, Aug. 1990.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE