簡易檢索 / 詳目顯示

研究生: 呂柏昱
Lu, Po-Yu
論文名稱: 利用超快光游離誘發氣相2-苯基乙基-N,N-二甲基胺陽離子內之電子轉移動態學研究
Ultrafast Photoionization Induced Electron-Transfer Dynamics in 2-phenylethyl-N,N-dimethylamine Cation in Gas Phase
指導教授: 鄭博元
Cheng, Po-Yuan
口試委員: 王念夏
Wang, Niann-Shiah
陳益佳
CHEN, I-CHIA
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 61
中文關鍵詞: 電子轉移氣相超快化學
外文關鍵詞: electron transfer, gas phase, ultrafast
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們利用飛秒雷射激發-探測光游離-光裂解技術(femtosecond pump-probe photoionization-photofragmentation spectroscopy)結合質譜偵測技術,研究2-苯基乙基-N,N-二甲基胺(PENNA)陽離子的電子轉移及相關動力學,並試圖與Schlag團隊的實驗結果做比較和探討。我們以1+1 REMPI技術(λpump = 265.9 nm)游離化PENNA,再藉由導入探測雷射(λprobe = 797.7 nm)得到PENNA離子碎裂強度隨時間變化的瞬時訊號。我們利用三組時間常數適解該瞬時訊號,分別是τ1≈ 0.15 ps、τ2≈ 18 ps與τ3≈ 56 ps。為了要進一步地指認何者為電子轉移,我們亦觀測苯乙醇(PEAL)、2-苯基乙基-N-甲基胺(MPEA)與2-苯乙胺(PEA)的離子瞬時訊號,其中PEAL在本實驗條件下並不會發生電子轉移,而MPEA與PEA分別為PENNA去掉一個和兩個甲基。利用PEAL陽離子損耗瞬時光譜適解出來的結果與其他三者比對,可以幫助我們排除不是電子轉移的時間常數,而MPEA與PEA的陽離子損耗瞬時光譜的適解,則可以讓我們觀察這個系統(包含PENNA)是否會有一系列具關聯性的變化。適解並比較分析的結果顯示出PENNA、MPEA與PEA陽離子都有一個次皮秒等級的τ_1,而此一成分在PEAL陽離子並未被觀察到,故我們將其指認為電子轉移。而PEAL陽離子我們只用兩組時間常數便可以很好地適解,其動態行為我們認為與PENNA+、MPEA+與PEA+上也會觀察到的τ2及τ3類似,是從陽離子FC態緩解到最穩定結構的過程。


    We studied the ultrafast electron transfer (ET) dynamics in the cations of 2-phenylethyl-N,N-dimethylamine (PENNA) after photoionization using the femtosecond pump-probe photoionization-photofragmentation (fs-PIPF) spectroscopy compared our experimental results with these reported by the Schlag's group. We photoionized PENNA in a supersonic beam with fs pump pulses at 265.9 nm with 1+1 REMPI via its S1 origin using the phenyl group as the chromophor, producing PENNA cation predominately in its first excited state (D1). The resulting PENNA cations were then probed by a second fs pulse at ~800 nm by exciting the evolving ionic system to higher excited states, which enhance the fragmentation yield of the cation. We used a consecutive reaction kinetics model including three time steps to fit the parent ion depletion transient signals, and the results are τ_1≈ 0.15 ps, τ_2≈ 18 ps and τ_3≈ 56 ps. To identify which one corresponds to the ET reation, we also carried out similar experiments for 2-phenylethylalcohol (PEAL), 2-phenylethyl-N-methylamine (MPEA) and 2-phenylethylamine (PEA). The results show that PENNA+, MPEA+ and PEA+ transients all contain a sub-ps component that is not observed in PEAL+ transient. For this reason, we attributed the sub-ps time constant to the the ET reaction. The two time constants we used to fit the PEAL+ transient are like the τ_2 and τ_3 in PENNA+, MPEA+ and PEA+, and are assigned to the conformational relaxations from the cation FC state to the most stable conformation.

    第 1 章 緒論 1 1.1 引文 1 1.2 文獻回顧:良好的實驗對象-PENNA分子 3 1.3 研究動機: Schlag團隊對PENNA的超快時間解析研究 6 第 2 章 實驗系統與技術 8 2.1激發-探測共振增強多光子游離技術 8 2.2 超快飛秒雷射系統 11 2.2.1 雷射產生源 11 2.2.2.能量再生放大器: 16 2.3波長調變器 22 2.3.1 倍頻與混頻技術 22 2.4分子束系統 23 2.4.1分子束樣品進氣裝置 27 2.5飛行時間質譜儀 29 2.6 實驗架設圖 33 2.7訊號擷取系統 34 2.8儀器響應函數(Instrument response function, IRF) 36 第 3 章 實驗結果與討論 38 3.1 PENNA陽離子泵浦-探測光游離-光裂解實驗條件 38 3.1.1 PENNA質譜圖 38 3.1.2 PENNA陽離子光游離-光裂解離子損耗光譜 39 3.1.3雷射能量依存性 40 3.2 與Schlag團隊的實驗結果之比較 42 3.2.1 PENNA和PEA的飛行質譜圖 42 3.2.2 雷射脈衝能量條件的差異 44 3.3動力學模型適解離子瞬時損耗訊號與數據分析 45 3.3.1適解PENNA陽離子損耗瞬時訊號與數據分析 45 3.3.2適解PEAL陽離子損耗瞬時訊號與數據分析 47 3.3.3適解MPEA陽離子和PEA陽離子損耗瞬時訊號與數據分析 49 3.4綜合討論 53 3.4.1電子轉移時間常數在不同樣品之比較 53 3.4.2理論計算結果 53 第 4 章 結論 58 參考文獻 60

    1. J. Barber and B. Andersson, Nature 370, 31 (1994).
    2. G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, Nat Chem 3, 763 (2011).
    3. A. Shah, B. Adhikari, S. Martic, A. Munir, S. Shahzad, K. Ahmad, and H.-B. Kraatz, Chem Soc Rev 44, 1015 (2015).
    4. E. W. Schlag, S. Y. Sheu, D. Y. Yang, H. L. Selzle, and S. H. Lin, Angewandte Chemie-International Edition 46, 3196 (2007).
    5. E. W. Schlag, S. Y. Sheu, D. Y. Yang, H. L. Selzle, and S. H. Lin, Proceedings of the National Academy of Sciences of the United States of America 97, 1068 (2000).
    6. E. Meggers, M. E. Michel-Beyerle, and B. Giese, J Am Chem Soc 120, 12950 (1998).
    7. K. Kawai and T. Majima, Accounts of Chemical Research 46, 2616 (2013).
    8. S. S. Isied, M. Y. Ogawa, and J. F. Wishart, Chemical Reviews 92, 381 (1992).
    9. M. R. Wasielewski, Chem. Rev. 92, 435 (1992).
    10. M. Gilbert and B. Albinsson, Chem Soc Rev 44, 845 (2015).
    11. F. D. Lewis, R. L. Letsinger, and M. R. Wasielewski, Acc. Chem. Res. 34, 159 (2001).
    12. D. M. Adams, L. Brus, C. E. D. Chidsey, S. Creager, C. Creutz, C. R. Kagan, P. V. Kamat, M. Lieberman, S. Lindsay, R. A. Marcus, R. M. Metzger, M. E. Michel-Beyerle, J. R. Miller, M. D. Newton, D. R. Rolison, O. Sankey, K. S. Schanze, J. Yardley, and X. Y. Zhu, J Phys Chem B 107, 6668 (2003).
    13. W. B. Davis, W. A. Svec, M. A. Ratner, and M. R. Wasielewski, Nature 396, 60 (1998).
    14. J. Jortner, M. Bixon, H. Heitele, and M. E. Michelbeyerle, Chem Phys Lett 197, 131 (1992).
    15. J. Jortner, M. Bixon, B. Wegewijs, J. W. Verhoeven, and R. P. H. Rettschnick, Chem. Phys. Lett. 205, 451 (1993).
    16. P. F. Barbara, T. J. Meyer, and M. A. Ratner, J. Phys. Chem. 100, 13148 (1996).
    17. J. Jiang, A. Alsam, S. Wang, S. M. Aly, Z. Pan, O. F. Mohammed, and K. S. Schanze, J. Phys. Chem. A 121, 4891 (2017).
    18. Y. Shibano, H. Imahori, P. Sreearunothai, A. R. Cook, and J. R. Miller, J. Phys. Chem. Lett. 1, 1492 (2010).
    19. J. W. Ho, W. K. Chen, and P. Y. Cheng, J. Phys. Chem. 131, 134308 (2009).
    20. C. C. Shen, T. T. Tsai, J. W. Ho, Y. W. Chen, and P. Y. Cheng, J. Phys. Chem. 141 (2014).
    21. C. C. Shen, T. T. Tsai, J. Y. Wu, J. W. Ho, Y. W. Chen, and P. Y. Cheng, J Chem Phys 147 (2017).
    22. R. Weinkauf, L. Lehr, and A. Metsala, J Phys Chem A 107, 2787 (2003).
    23. J. Yao, H. S. Im, M. Foltin, and E. R. Bernstein, J Phys Chem A 104, 6197 (2000).
    24. J. D. Cardoza, F. M. Rudakov, and P. M. Weber, J Phys Chem A 112, 10736 (2008).
    25. W. Cheng, N. Kuthirummal, J. L. Gosselin, T. I. Solling, R. Weinkauf, and P. M. Weber, J Phys Chem A 109, 1920 (2005).
    26. L. Lehr, T. Horneff, R. Weinkauf, and E. W. Schlag, J Phys Chem A 109, 8074 (2005).
    27. R. Weinkauf, P. Schanen, A. Metsala, E. W. Schlag, M. Burgle, and H. Kessler, J. Phys. Chem. 100, 18567 (1996).
    28. E. W. Schlag, H. L. Selzle, P. Schanen, R. Weinkauf, and R. D. Levine, J Phys Chem A 110, 8497 (2006).
    29. S. T. Sun, B. Mignolet, L. Fan, W. Li, R. D. Levine, and F. Remacle, J Phys Chem A 121, 1442 (2017).
    30. G. L. Closs, L. T. Calcaterra, N. J. Green, K. W. Penfield, and J. R. Miller, J Phys Chem-Us 90, 3673 (1986).
    31. G. L. CLOSS and J. R. MILLER, Science 240, 440 (1988).
    32. M. D. Johnson, J. R. Miller, N. S. Green, and G. L. Closs, J Phys Chem-Us 93, 1173 (1989).
    33. W. Fu, K. K. Pushpa, W. Rettig, W. E. Schmid, and S. A. Trushin, Photoch Photobio Sci 1, 255 (2002).
    34. 周威銧, 胞嘧啶之氣相超快激發態動態學研究:激發態衰減時間與激發能量的依存性, in 化學系. 2008, 國立清華大學: 新竹市. p. 106.
    35. 陳依微, 酚-氨陽離子錯合物中之超快質子轉移反應動態學研究, in 化學系. 2011, 國立清華大學: 新竹市. p. 91.
    36. 何智偉, 氣相飛秒化學反應動態學研究1.二甲基亞碸之超快三體光解反應動態學2.偶氮苯陽離子在異構化途徑之同調振動, in 化學系. 2008, 國立清華大學: 新竹市. p. 226.
    37. Eldredge, B.A.A.P., General Chemistry: Principles, Patterns, and Applications, v. 1.0 (2 Volume Set).
    38. R.E. Smalley, L. Wharton, and D.H. Levy, Acc. Chem. Res. 10, 139 (1977)
    39. W.C. Wiley, and I.H. McLaren, Rev. Sci. Instrum. 26, 1150 (1955)

    QR CODE