簡易檢索 / 詳目顯示

研究生: 蕭凱文
Kai-Wen Hsiao
論文名稱: 以等通道轉角擠型製作奈米顆粒散佈
The production of nano-particle dispersed bulk Cu alloy by Equal Channel Angular Extrusion
指導教授: 張士欽
Shih-Chin Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 103
中文關鍵詞: 等通道轉角擠型銅粉散佈強化內部氧化
外文關鍵詞: ECAE, Cu powder, dispersion strengthening, internal oxidation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究發展出了結合了粉末冶金和等通道轉角擠型的製程。基於Segal所設計的H型擠桿,加上適當的修改後,可以在室溫下成功的完成銅粉以及銅粉加氧化鋁粉粉末擠錠的擠型,形成塊材。分析擠型過程中所需要的力量,可以發現主要都是為了要克服擠型過程中產生的摩擦力。
    本研究所製造出的 Cu – 0.5 ~ 5 % Al2O3在經過第一道擠型之後就可以達到98 %的理論密度。銅的基材在經過奈米氧化鋁顆粒強化之後,可以獲得奈米等級的晶粒。在600 oC退火一小時候,晶粒大小仍然維持在200 nm。該材料具有高導電度,很好的機械性質,以及優異的抗軟化能力。經過一道擠型之後,可以獲得Hv 140 ~ 160的硬度。當氧化鋁的含量高於0.5 wt%,經過400 oC退火一個小時後硬度可以維持在Hv 92以上,導電度則達到90 %IACS。400 oC退火過的材料,即使再次加熱到1000 oC,軟化的程度仍然在20 %以內。


    In this study, a process combining powder metallurgy and equal channel angular extrusion (ECAE) was developed. By a modified ECAE die based on Segal’s H plunger design, Cu and Cu + Al2O3 powder billet can be successfully extruded at room temperature to form a bulk material. The load needed during extrusion was analyzed and it is contributed mainly by adhesion friction.
    The Cu – 0.5 ~ 5 % Al2O3 bulk materials produced in this study reached 98% of its theoretical density in the first pass. The Cu matrix strengthened by nano-sized Al2O3 particles has a grain size of nanometer scale. The grain size of the material remains at 200 nm after annealing at 600 oC for one hour. The material shows good electrical and mechanical properties and excellent softening resistance. Hardness in the range of Hv 140 to 160 can be obtained after first extrusion. For billets that contains Al2O3 more than 0.5 wt%, hardness higher than Hv 92 and conductivity higher than 90% IACS were obtained after annealing at 400 oC for one hour. After annealing at 400 oC for one hour, less than 20 % softening could be found even further heat to 1000 oC for one hour.

    Contents Abstract ……………………………………………………….. i Acknowledgement …………………………………………….. iii Contents ……………………………………………………….. iv I. Introduction …………………………………………….. 1 II. Literature Review ………………………………………. 6 2.1 Equal Channel Angular Extrusion ………………….... 6 2.1.1 Basics of ECAE ……………………………... 6 2.1.2 Deformation Homogeneity ………………….. 7 2.1.3 Different extrusion routes in ECAE ………… 9 2.1.4 ECAE of different materials ………………… 10 2.1.5 Friction …………………………………..….. 11 2.1.6 Other ECAE methods …………..…………… 12 2.2 Internal Oxidation …………………………..………… 12 III. Experimental ………………………………….….……... 14 3.1 Die Design ………………………………..………….. 14 3.2 Preparation for the Green Powder Billet …..………….. 16 3.3 ICP Test ………………………………………..……… 17 3.4 ECAE ……………………………………………....... 18 3.5 Annealing ……………………………………………. 19 3.6 Hardness Test …………………………………………. 20 3.7 Softening Temperature Test …………………………… 20 3.8 Conductivity Measurement ……………………………. 21 3.9 Microstructure Observation …………………………... 22 3.10 TEM …………………………………………………. 22 IV. Results …………………………………………………... 23 4.1 Equal Channel Angular Extrusion …………………….. 23 4.2 Material Properties ……………………………………. 24 4.2.1 Density …………………………………………. 24 4.2.2 Microstructure ………………………………….. 25 4.2.3 Hardness ………………………………………... 26 4.2.4 Conductivity ……………………………………. 27 4.2.5 Softening resistance …………………………… 27 4.2.6 TEM observation ………………………………. 28 V. Discussions ……………………………………………… 29 5.1 Deformation Pattern …………………………………... 29 5.2 ECAE Load Analysis …………………………………. 30 5.3 The Dilatation of the Extruded Material in Annealing……. 32 5.4 Hardness ………………………………………………. 33 5.5 Conductivity …………………………………………… 33 VI. Conclusion ………………………………………………. 35 VII. Reference ……………………………………………..…. 36 Figures …………………………………………………………. 42 Appendix I. Tables ………………………….………………….. 102

    1. Segal V.M., "Materials processing by simple shear", Mater. Sci. Eng., A197 (1995) 157-164
    2. Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, “An investigation of microstructural evolution during equal-channel angular pressing”, Acta Mater., 45 (1997) 4733-4741
    3. Y. Iwahashi, Z. Horita, M. Nemoto, T. G. Langdon, “The process of grain refinement in equal-channel angular pressing”, Acta Mater., 46 (1998) 3317-3331
    4. V.M. Segal, US Patent 54,006,33A (1995)
    5. J. B. Correia, M. P. Caldas, N. Shohoji, “Dependence of internal oxidation rate of water atomized Cu-Al alloy powders on oxygen partial pressure”, J. Mater. Sci. Let., 15 (1996) 465-468
    6. F. R. Chen, T. C. Hsu, I. F. Tsu, L. Chang, “Investigation of the interface structure of Cu/Oxide precipitates in an internally oxidized Cu-Al alloy“, Mater. Chem. Phy., 32 (1992) 207-211
    7. S. H. Kim, D. N. Lee, “Fabrication of alumina dispersion strengthened copper strips by internal oxidation and hot roll bonding”, Mater. Sci. Tech., 15 (1999) 352-354
    8. 吳一經, “A study of the dispersion strengthened Cu-Al alloy”, 國立清華大學碩士論文, 1998
    9. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T. G. Langdon, “Principle of equal channel angular pressing for the processing of ultra-fine grain materials”, Scripta Mater., 35 (1996) 143-146
    10. J. R. Brown, A. Gholinia, S. M. Roberts, P. B. Prangnell, “Analysis of the billet deformation behaviour in equal channel angular extrusion”, Mater. Sci. Eng., A287 (2000) 87-99
    11. S. L. Semiati, D. P. Delo, E. B. Shell, “The effect of material properties and tooling design on deformation and fracture during equal channel angular extrusion”, Acta Mater., 48 (2000) 1841-1851
    12. K. Neishi, T. Uchida, A. Yamauchi, K. Nakamura, Z. Horita, T. G. Langdon, “Low temperature superplasticity in a Cu-Zn-Sn alloy processed by severe plastic deformation”, Mater. Sci. Eng., A307 (2001) 23-28
    13. K. Neishi, Z. Horita, T. G. Langdon, “Achieving superplasticity in ultrafine-grained copper: influence of Zn and Zr addition”, Mater. Sci. Eng., A352 (2003) 129-135
    14. H. Hasegawa, S. Komura, A. Utsunomiya, Z. Horita, M. Furukawa, M. Nemoto, T. G. Langdon, “Thermal stability of ultrafine-grained aluminum in the presence of Mg and Zr”, Mater. Sci. Eng., A265 (1999) 188-196
    15. M. Furukawa, A. Utsunomiya, K. Matsubara, Z. Horita, T. G. Langdon, “Influence of magnesium on grain refinement and ductility in a dilute Al–Sc alloy “, Acta Mater., 49 (2001) 3829-3838
    16. K. Neishi, Z. Horita, T. G. Langdon, “Grain refinement of pure nickel using equal-channel angular pressing”, Mater. Sci. Eng., A325 (2002) 54-58
    17. G. G. Yapici, I. Karaman, Z. P. Luo, H. Rack, “Microstructure and mechanical properties of severely deformed powder processed Ti-6Al-4V using equal channel angular extrusion”, Scripta Mater., 49 (2003) 1021-1027
    18. D. H. Shin, B. C. Kim, Y. S. Kim, K. T. Park, “Microstructural evolution in a commercial low carbon steel by equal channel angular pressing“, Acta Mater., 48 (2000) 2247-2255
    19. J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R. Z. Valiev, T. G. Langdon, “An investigation of microstructural stability in an Al-Mg alloy with submicrometer grain size”, Acta Mater., 44 (1996) 2973-2982
    20. M. Furukawa, Z. Horita, M. Nemoto, R. Z. Valiev, T. G. Langdon, ”Microhardness measurements and the Hall-Petch relationship in an Al Mg alloy with submicrometer grain size”, Acta Mater., 44 (1996) 4619-4629
    21. P. B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, T. G. Langdon, ”Influence of pressing speed on microstructural development in equal-channel angular pressing“ Metall. Mater. Trans., A 30 (1999) 1989-1997
    22. A. Shan, I. G. Moon, J. W. Park, “Estimation of friction during equal channel angular pressing of aluminum alloys”, J. Mater. Proc. Tech., 122 (2002) 255-259
    23. U. Chakkingal, A. B. Suriadi, P. F. Thomson, “Microstructure development during equal channel angular drawing of Al at room temperature”, Scripta Mater., 39 (1998) 677-684
    24. C.J. Louis Perez, C. Berlanga, J. Perez Ilzarbe, “Processing of aluminum alloys by equal channel angular drawing at room temperature”, J. Mater. Proc. Tech., 143-144 (2003) 105-111
    25. Y. Nishida, H. Arima, J. C. Kim, T. Ando, “Rotary-die equal-channel angular pressing of an Al – 7 mass% Si – 0.35 mass% Mg alloy”, Scripta Mater. 45 (2001) 261-266
    26. J. C. Kim, Y. Nishida, H. Arima, T. Ando, “Microstructure of Al-Si-Mg alloy processed by rotary-die equal channel angular pressing”, Mater. Lett. 57 (2003) 1689-1695
    27. Z. Y. Liu, G. X. Liang, E. D. Wang, Z. R. Wang, “The effect of cumulative large plastic strain on the structure and properties of a Cu-Zn alloy”, Mater. Sci. Eng., A242 (1998) 137-140
    28. A. Rosochowski, L. Olejnik, “Numerical and physical modeling of plastic deformation in 2-turn equal channel angular extrusion”, J. Mater. Proc. Tech., 125-126 (2002) 309-316
    29. K. Nakashima, Z. Horita, M. Nomoto, T. G. Langdon, “Development of a multi-pass facility for equal channel angular pressing to high total strains”, Mater. Sci. Eng., A281 (2000) 82-87
    30. H. Utsunomiya et al, “Continuous ECAE process of aluminum strip”, Proceedings of the Eighth International Conference on Metal Forming, Krakow, September 3-7, 2000, pp. 337
    31. D. Y. Ying, D. L. Zhang, “Processing of Cu-Al2O3 metal matrix nanocomposite materials by using high energy ball milling”, Mater. Sci. Eng., A286 (2000) 152-156
    32. Z. Shi, D. Wang, “Alumina particles in a copper matrix formed by aluminizing and internal oxidation”, J. Mater. Sci. Lett., 17 (1998) 477-479
    33. 曾苑瑋, “A study of the phased in the internally oxidized Cu-Al alloy”, 國立清華大學碩士論文, 1999
    34. 楊盛淵, “A study of internal oxidation in Cu-Al-Ag and Cu-Al-Sn alloys”, 國立清華大學碩士論文, 2000
    35. Z. Shi, M. Yan, “The preparation of Al2O3–Cu composite by internal oxidation”, App. Surf. Sci., 14 (1998) 103-106
    36. H. E. N. Stone, “A new method for internal oxidation at low oxygen pressures”, Materials Science and Engineering, 5 (1969/70) 44

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE