研究生: |
曾文賢 Wen-Hsien Tseng |
---|---|
論文名稱: |
可劣解性雙團聯共聚合物PS-PLLA於建立奈米圖案成型技術與製備奈米模版之研究 Nanopatterning and Nanotemplation from Degradable Block Copolymer —PS-PLLA |
指導教授: |
何榮銘
Rong-Ming Ho |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 149 |
中文關鍵詞: | 奈米模版 、聚乳酸 、薄膜 、奈米圖案成型技術 、團聯高分子 、可劣解性 |
外文關鍵詞: | block copolymer, degradable, PS-PLLA, thin film, nanopattern, nanotemplation |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用可劣解性雙團聯共聚合物PS-PLLA建立奈米圖案成型技術,以結晶性小分子排整具層板微結構之PS-PLLA薄膜,以溶劑之揮發控制具六角圓柱微結構之PS-PLLA薄膜,最後配合鹼性水解將聚乳酸劣解以製備大範圍有序之奈米圖案薄膜。並結合溶膠化學製備有機奈米螺旋結構
Block copolymers containing aliphatic polyesters draw extensive attention in the preparation of nanoporous polymers attributed to the easy degradation of ester groups by hydrolysis. The ordered nanoporous polymer is very suitable to be the template for fabrication of nanomaterials due to the nanoreactor concept. In this study, a series of degradable block copolymers, poly(styrene)-b-poly(L-lactide) (PS-PLLA), has been synthesized. We try to control the orientations of lamellar and cylindrical nanostructures in thin-film state.
For lamellar thin-film system, well-oriented lamellar nanostructures of PS-PLLA thin films were produced by using the crystallizable solvents: benzoic acid (BA) and hexamethylbenzene (HMB). In strongly segregated PS-PLLA (PS130-PLLA106 (fPLLAv=0.49)), the oriented nanostructures were obtained through the PS-PLLA microphase separation due to directional crystallization of crystallizable solvents at the eutectic point (directional eutectic solidification) regardless of the PLLA crystallization. Lattice matching between crystalline substrates and PLLA was found to be non-essential for inducing nanostructure orientation although it may improve its orientation order. In weakly segregated PS-PLLA (PS36-PLLA32 (fPLLAv=0.49)), the oriented nanostructures were formed through the directional crystallization of PLLA on the substrates (crystallization-induced orientation) regardless of the directional eutectic solidification and lattice matching. Two mechanisms: mechanisms of directional eutectic solidification and of crystallization-induced oriented nanostructure have thus been identified. Oriented, defined lamellar trenches can be prepared by hydrolysis of PLLA component; providing a possible path to prepare nanopatterned templates with lamellar nanochannels.
For cylindrical thin-film system, well-oriented, perpendicular PLLA cylinders of PS-PLLA thin films were efficiently achieved by spin coating using appropriate solvents regardless of the use of substrates. After hydrolysis of PLLA, well-oriented HC nanochannel arrays over large area in addition to uniform surface with controlled thickness and domain size were obtained; providing a simple and efficient path to prepare nanopatterned templates for applications. The induced orientation of PS-PLLA nanostructure was strongly dependent upon the evaporation rate of solvent and its solubility between constituted blocks. The origins for the formed perpendicular HC morphology were also systematically studied. The primary concern of controlled morphology for nanopatterning is to develop ordered microphase-separated morphology by considering the time scale for segregation, namely segregation strength during solvent evaporation. The induced orientation is attributed to the permeation discrepancy between phase-separated microdomains. The perpendicular morphology is initiated from the air surface, and formed in order to create an optimized condition (i.e., the fastest path) for solvent evaporation whereas parallel morphology may impede the evaporation of solvent molecules. Following the nucleation of microphase separation, the perpendicular morphology can be kinetically induced by solvent evaporation.
For application approach, we demonstrate the possibility to fabricate the inorganic nanohelices and helical nanocomposites by the combination of chiral degradable block copolymer and sol-gel chemistry. Inorganic nanohelices have attractive applications in nanomechanical, -sensing, -electronic, -electromagnetic, -optoelectronic devices, and composite materials. In addition, the well-oriented inorganic helical nanostructures can be used as photonic crystals, alignment films for liquid crystal and so on. 3D hexagonally packed helical nanostructure of PLLA in the PS matrix was formed by self-assembly of chiral block copolymer PS-PLLA with specific volume fraction (PS267-PLLA118 (fPLLAv=0.33)). After hydrolysis of PLLA blocks, helical nanoporous PS template was obtained. Subsequently, the silica precursor mixture was introduced in PS template by pore-filling process at room temperature. After aging under controlled humidity and then drying under atmosphere, the PS/SiO2 helical nanocomposite was successfully prepared. In addition, we also can prepare the SiO2 nanohelices by degradation of the PS template by UV exposure. As a result, the formation of inorganic nanoobjects and inorganic/organic nanocomposites from the degradable block copolymers represents an excellent way for the manufacturing of materials in nanoscale through templation.
(1) For a recent review, see Park, C.; Yoon, J.; Thomas, E. L. Polymer 2003, 44, 6725.
(2) Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
(3) Moreau, W.M. Semiconductor lithography: principles and materials New York: Plenum; 1988.
(4) Smith, H. I.; Schattenberg, M. L.; Hector, S. D.; Ferrera, J. Moon, E. E.; Yang, I. Y.; Burkhardt, M. Microelctron Engng 1996, 32, 143.
(5) Yang, P.; Wirnsberger, G.; Huang, H. C.; Cordero, S. R.; McGehee, M. D.; Scott, B.; Deng, T.; Whitesides, G. M.; Chmelka, B. F.; Buratto, S. K.; Stucky, G. D. Science 2000 , 287, 465.
(6) Unger, M. A.; Chou, H. P.; Thorsen, T.; Scherer, A.; Quake, S. R. Science 2000, 288, 113.
(7) Chien, S. S.; Wu, C. L.; Chou, Y. C.; Chen, T. T.; Gwo,S.; Hsieh, W. F. Appl. Phys. Lett. 1999, 75, 2429.
(8) Broers, A. N.; Molzen, W.; Cuomo, J.; Wittels, N. Appl. Phys. Lett. 1976, 29, 596.
(9) Chou, S. Y.; Wei, M. S.; Krauss, P. R.; Fischer, P. B. J. Appl. Phys. 1994, 76, 6673.
(10) Hyde S, Anderson S, Larsson K, Blum Z, Landh T, Lidin S, Ninham B. W. The language of shape. New York: Elsevier; 1997.
(11) Ball P. Made to Measure. Biomaterials, 1997. New York, Chapter 4, Only natural.
(12) Rapaport, H.; Moller, G.; Knobler, C. M.; Jensen, T. R.; Kjaer, K.; Leiserowitz L.; Tirrell, D. A. J. Am. Chem. Soc. 2002, 124, 9342.
(13) Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
(14) Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
(15) Fasolka, M.; Mayes, A. M. Ann. Rev. Mater. Res. 2001, 31, 323.
(16) Zheng, W.; Wang, Z.-G. Macromolecules 1995, 28, 7215.
(17) Abetz, V. Supramolecular polymers. New York: Marcel Dekker, 2000.
(18) Hashimoto, T.; Tsutsumi, K.; Funaki, Y. Langmuir 1997, 13, 6869.
(19) van Dijk, M. A.; van den Berg, R. Macromolecules 1995, 28, 6773.
(20) Kim, G.; Libera, M. Macromolecules 1998, 31, 2569.
(21) Fukunaga, K.; Elbs, H.; Magerle, R.; Krausch, G. Macromolecules, 2000, 33, 947.
(22) Lin, Z.; Kim, D. H..; Wu, X.; Boosahda, L.; Stone, D.; LaRose, L.; Russell, T. P. Adv. Mater. 2002, 14, 1373.
(23) Kim, S. H.; Misner, M. J.; Xu, T.; Kimura, M.; Russell, T. P. Adv. Mater. 2004, 16, 226.
(24) Mansky, P.; Harrison, C. K.; Chaikin, P. M.; Register, R. A.; Yao, N. Appl. Phys. Lett. 1996, 68, 2586.
(25) Lammertink, R. G. H.; Hempenius, M. A.; Van den Enk, J. E.; Chan, V. Z.-H.; Thomas, E. L.; Vancso, G. J. Adv. Mater. 2000, 12, 98.
(26) Hahm, J.; Sibener, S. J. Langmuir 2000, 16, 4766.
(27) Ho, R.-M.; Tseng, W.-H.; Fan, H.-W.; Chiang Y.-W.; Lin, C.-C.; Huang, B.-H.; Kao, B.-T. Polymer 2005, 46, 9362.
(28) Keller, A.; Pedemonte, E.; Willmouth, F. M. Nature 1970, 225, 538.
(29) Albalak, R. J.; Thomas, E. L.; J. Polym. Sci. Part B Polym. Phys. 1993, 32, 37.
(30) Koppi, K. A.; Tirrell, M.; Bates, F. S. Phys. Rev. Lett. 1993, 70, 1449.
(31) Honeker, C. C.; Thomas, E. L.; Albalak, R. J.; Hajduk, D. A.; Gruner, S. M.; Capel, M. C. Macromolecules 2000, 33, 9395.
(32) Chen, Z.-R.; Kornfield, J. A.; Smith, S. D.; Grothaus, J. T.; Satkowski, M. M. Science 1997, 277, 1248.
(33) Angelescu, D. E.; Waller, J. H.; Adamson, D. H.; Deshpande, P; Chou, S. Y.; Register, R. A.; Chaikin, P. M. Adv. Mater. 2004, 16, 1736.
(34) Angelescu, D. E.; Waller, J. H.; Register, R. A.; Chaikin, P. M. Adv. Mater. 2005, 17, 1878.
(35) Morkved, T. L.; Lu, M.; Urbas, A. M.; Ehrichs, E. E.; Jaeger, H. M.; Mansky, P.; Russell, T. P. Science 1996, 273, 931.
(36) Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi,T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Science 2000, 290, 2126.
(37) Mansky, P.; Liu, Y.; Huang, E.; Russell, T. P.; Hawker, C. Science 1997, 275, 1458.
(38) Huang, E.; Rockford, L.; Russell, T. P.; Hawker, C. J. Nature 1998, 395, 757.
(39) Rockford, L.; Liu, Y.; Mansky, P.; Russell, T. P. Phys. Rev. Lett. 1999, 82, 2602.
(40) Heier, J.; Genzer, J.; Kramer, E. J.; Bates, F. S.; Walheim, S.; Krausch, G. J. Chem. Phys. 1999, 111, 11101.
(41) Kim, S. O.; Solak, H. H.; Stoykovich, M. P.; Ferrier, N. J.; dePablo, J. J.; Nealey, P. F. Nature, 2003, 424, 411.
(42) Hashimoto, T.; Bodycomb, J.; Funaki, Y.; Kimishima, K. Macromolecules 1999, 32, 952.
(43) Segalman, R. A.; Yokoyama, H.; Kramer, E. J. Adv. Mater. 2001, 13, 1152.
(44) Cheng, J. Y.; Ross, C. A.; Thomas, E. L.; Smith, H. I.; Vancso, G. J. Appl. Phys. Lett. 2002, 81, 3657.
(45) De Rosa, C.; Park, C.; Thomas, E. L.; Lotz, B. Nature 2000, 405, 433.
(46) De Rosa, C.; Park, C.; Lotz, B.; Wittmann, J. C.; Fetters, L. J.; Thomas, E. L. Macromolecules 2000, 33, 4871.
(47) Park, C.; De Rosa, C.; Thomas, E. L. Macromolecules 2001, 34, 2602.
(48) Ho, R.-M.; Hsieh, P.-Y.; Tseng, W.-H.; Lin, C.-C.; Huang, B.-H.; Lotz, B. Macromolecules 2003, 36, 9085.
(49) Park, C.; De Rosa, C.; Lotz, B.; Fetters, L. J.; Thomas, E. L. Macromol. Chem. Phys. 2003, 204, 1514.
(50) Tseng, W.-H.; Hsieh, P.-Y.; Ho, R.-M.; Huang, B.-H.; Lin, C.-C.; Lotz, B. Macromolecules 2006, 39, 7071.
(51) Morikawa, Y.; Nagano, S.; Watanabe, K.; Kamata, K.; Iyoda, T. Seki, T. Adv. Mater. 2006, 18, 883.
(52) Yu, H.; Iyoda, T.; Ikeda T. J. Am Chem. Soc. 2006, 128, 11010.
(53) Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Science 1997, 276, 1401.
(54) Thurn-Albrecht, T.; Steiner, R.; DeRouchey, J.; Stafford, C. M.; Huang, E.; Bal, M.; Tuominen, M.; Hawker, C. J.; Russell T. P. Adv. Mater. 2000, 12, 787.
(55) Zalusky, A. S.; Olayo-Valles, R.; Taylor, C. J.; Hillmyer, M. A. J. Am Chem. Soc. 2001, 123, 1519.
(56) Cheng, J. Y.; Ross, C. A.; Chan, V. Z. H.; Thomas, E. L.; Rob, G. H.; Lammertink, R. G. H.; Vancso, G. J. Adv. Mater. 2001, 13, 1174.
(57) Lin, Y.; Boker, A.; He1, J.; Sill, K.; Xiang, H.; Abetz, C.; Li, X.; Wang, J.; Emrick, T.; Long, S.; Wang, Q.; Balazs, A.; Russell, T. P. Nature 2005, 434, 55.
(58) Boontongkong, Y.; Cohen, R. E. Macromolecules 2002, 35, 3647.
(59) Johnson, B. J. S.; Wolf, J. H.; Zalusky, A. S.; Hillmyer, M. A. Chem. Mater. 2004, 16, 2909.
(60) Lo, K.-H.; Tseng, W.-H.; Ho, R.-M. Macromolecules 2007, 40, 2621.
(61) Adachi, M.; Okumura, A.; Sivaniah, E.; Hashimoto, T. Macromolecules 2006, 39, 7352.
(62) Hu, J.; Odom, T. W.; Lieber, C. M. Acc. Chem. Res. 1999, 32, 435.
(63) Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Science 2002, 297, 787.
(64) Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947.
(65) Zhang, H. F.; Wang, C. M.; Wang, L. S. Nano Lett. 2002, 2, 941.
(66) Zhang, H. F.; Wang, C. M.; Buck, E. C.; Wang, L. S.Nano Lett. 2003, 3, 577.
(67) Kong, X. Y.; Wang, Z. L. Nano Lett. 2003, 3, 1625.
(68) Kong, X. Y.; Ding, Y.; Yang, R.; Wang, Z. L. Science 2004, 303, 1348.
(69) Gao, P. X.; Ding, Y.; Mai, W.; Hughes, W. L.; Lao, C.; Wang, Z. L. Science 2005, 309, 1700.
(70) Sit, J. C.; Broer, D. J.; Brett, M. J. Adv. Mater. 2000, 12, 371.
(71) Thiel, M.; Decker, M.; Deubel, M.; Wegener, M.; Linden, S.; Freymann G. Adv. Mater. 2007, 19, 207.
(72) Kennedy, S. R.; Brett, M. J.; Toader, O.; John, S. Nano Lett. 2002, 2, 59.
(73) Hrudey, P. C. P.; Szeto, B.; Brett, M. J. Appl. Phys. Lett. 2006, 88, 251 106.
(74) Elias, A. L.; Harris, K. D.; Brett, M. J. J. Micro. Sys. 2004, 13, 808.
(75) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710.
(76) Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D. Nature 1994, 368, 317.
(77) Tanev, P. T.; Pinnavaia, T. J. Science 1995, 267, 865.
(78) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.
(79) Antonelli, D. M.; Ying, J. Y. Angew. Chem. Int. Ed. Engl. 1996, 35, 426.
(80) Che, S.; Liu, Z.; Ohsuna, T.; Sakamoto, K.; Tersarki, O.; Tatsumi, T. Nature 2004, 429, 281.
(81) Ohsuna, T.; Liu, Z.; Che, S.; Terasaki, O. Small 2005, 233.
(82) Jin, H.; Liu, Z.; Ohsuna, T.; Ohsuna, T.; Inoue, Y.; Sakamoto, K.; Nakanishi, T.; Ariga, K.; Che S. Adv. Mater. 2006, 18, 593.
(83) Wu, Y.; Cheng, G.; Katsov, K.; Sides, S. W.; Wang, J.; Tang, J.; Fredrickson, G. H.; Moskovits, M.; Stucky, G. D. Nat. Mater. 2004, 3, 816.
(84) Wu, Y.; Livneh, T. Zhang, Y. X.; Cheng, G.; Wang, J.; Tang, J.; Moskovits, M.; Stucky, G. D. Nano Lett. 2004, 4, 2337.
(85) Ko, B.-T.; Lin, C.-C. J. Am. Chem. Soc. 2001, 123, 7973.
(86) Ho, R.-M.; Chiang, Y.-W.; Tsai, C.-C.; Lin, C.-C.; Ko, B.-T.; Huang, B.-H. J. Am. Chem. Soc. 2004, 126, 2704.
(87) Tao, L.; Luan, B.; Pan, C.-Y. Polymer 2003, 44, 6725.
(88) Spatz, J. P.; Sheiko, S.; Möller, M. Adv. Mater. 1996, 8, 513.
(89) Cartier, L.; Okihara, T.; Ikada, Y.; Tsuji, H.; Puiggali, J.; Lotz, B. Polymer 2000, 41, 8909.
(90) Sarma, K. R.; Shlichta, P. J.; Wilcox, W. R.; Lefever, R. A. J. Cryst. Growth 1997, 174, 487.
(91) Holmbäck, X.; Rasmuson, A. C. J. Cryst. Growth 1999, 199, 780.
(92) Smith, H. I.; Schattenberg, M. L.; Hector, S. D.; Ferrera, J. Moon, E. E.; Yang, I. Y.; Burkhardt, M. Microelctron Engng 1996, 32, 143.
(93) Mark, J.E. Physical Properties of Polymers Handbook. New York: AIP Press; 1996.
(94) Blomqvista, J.; Mannforsa, B.; Pietilä, L. O. Polymer 2002, 43, 4571.
(95) Auras, R.; Harte, B.; Selke, S. Macromol. Biosci. 2004, 4, 835.
(96) Vitt, E.; Shull, K. R. Macromolecules 1995, 28, 6349.
(97) Olayo-Valles, R.; Lund, M. S.; Leighton, C.; Hillmyer, M. A. J. Mater. Chem. 2004, 14, 2729.
(98) Hanley, K. J.; Lodge, T. P.; Huang, C. I. Macromolecules 2000, 33, 5918.
(99) Lodge, T. P.; Pudil, B.; Hanley, K. J. Macromolecules 2002, 35, 4707.
(100) Lodge, T. P.; Hanley, K. J.; Pudil, B.; Alahapperuma, V. Macromolecules 2003, 36, 816.
(101) Hozumi, A.; Yokogawa, Y.; Kameyama, T.; Hiraku, K.; Sugimura, H.; Takai, O.; Okido M. Adv. Mater. 2000, 12, 985.
(102) Ho, R.-M.; Chiang Y.-W.; Tseng, W.-H.; Chen, C.-K.; Burger, C.; Hsiao, B. S.; Thomas, E. L. in preparation.
(103) Pierre, A. C. Introduction to Sol-gel Process 1996.