簡易檢索 / 詳目顯示

研究生: 曾文賢
Wen-Hsien Tseng
論文名稱: 可劣解性雙團聯共聚合物PS-PLLA於建立奈米圖案成型技術與製備奈米模版之研究
Nanopatterning and Nanotemplation from Degradable Block Copolymer —PS-PLLA
指導教授: 何榮銘
Rong-Ming Ho
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 149
中文關鍵詞: 奈米模版聚乳酸薄膜奈米圖案成型技術團聯高分子可劣解性
外文關鍵詞: block copolymer, degradable, PS-PLLA, thin film, nanopattern, nanotemplation
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用可劣解性雙團聯共聚合物PS-PLLA建立奈米圖案成型技術,以結晶性小分子排整具層板微結構之PS-PLLA薄膜,以溶劑之揮發控制具六角圓柱微結構之PS-PLLA薄膜,最後配合鹼性水解將聚乳酸劣解以製備大範圍有序之奈米圖案薄膜。並結合溶膠化學製備有機奈米螺旋結構


    Block copolymers containing aliphatic polyesters draw extensive attention in the preparation of nanoporous polymers attributed to the easy degradation of ester groups by hydrolysis. The ordered nanoporous polymer is very suitable to be the template for fabrication of nanomaterials due to the nanoreactor concept. In this study, a series of degradable block copolymers, poly(styrene)-b-poly(L-lactide) (PS-PLLA), has been synthesized. We try to control the orientations of lamellar and cylindrical nanostructures in thin-film state.
    For lamellar thin-film system, well-oriented lamellar nanostructures of PS-PLLA thin films were produced by using the crystallizable solvents: benzoic acid (BA) and hexamethylbenzene (HMB). In strongly segregated PS-PLLA (PS130-PLLA106 (fPLLAv=0.49)), the oriented nanostructures were obtained through the PS-PLLA microphase separation due to directional crystallization of crystallizable solvents at the eutectic point (directional eutectic solidification) regardless of the PLLA crystallization. Lattice matching between crystalline substrates and PLLA was found to be non-essential for inducing nanostructure orientation although it may improve its orientation order. In weakly segregated PS-PLLA (PS36-PLLA32 (fPLLAv=0.49)), the oriented nanostructures were formed through the directional crystallization of PLLA on the substrates (crystallization-induced orientation) regardless of the directional eutectic solidification and lattice matching. Two mechanisms: mechanisms of directional eutectic solidification and of crystallization-induced oriented nanostructure have thus been identified. Oriented, defined lamellar trenches can be prepared by hydrolysis of PLLA component; providing a possible path to prepare nanopatterned templates with lamellar nanochannels.
    For cylindrical thin-film system, well-oriented, perpendicular PLLA cylinders of PS-PLLA thin films were efficiently achieved by spin coating using appropriate solvents regardless of the use of substrates. After hydrolysis of PLLA, well-oriented HC nanochannel arrays over large area in addition to uniform surface with controlled thickness and domain size were obtained; providing a simple and efficient path to prepare nanopatterned templates for applications. The induced orientation of PS-PLLA nanostructure was strongly dependent upon the evaporation rate of solvent and its solubility between constituted blocks. The origins for the formed perpendicular HC morphology were also systematically studied. The primary concern of controlled morphology for nanopatterning is to develop ordered microphase-separated morphology by considering the time scale for segregation, namely segregation strength during solvent evaporation. The induced orientation is attributed to the permeation discrepancy between phase-separated microdomains. The perpendicular morphology is initiated from the air surface, and formed in order to create an optimized condition (i.e., the fastest path) for solvent evaporation whereas parallel morphology may impede the evaporation of solvent molecules. Following the nucleation of microphase separation, the perpendicular morphology can be kinetically induced by solvent evaporation.
    For application approach, we demonstrate the possibility to fabricate the inorganic nanohelices and helical nanocomposites by the combination of chiral degradable block copolymer and sol-gel chemistry. Inorganic nanohelices have attractive applications in nanomechanical, -sensing, -electronic, -electromagnetic, -optoelectronic devices, and composite materials. In addition, the well-oriented inorganic helical nanostructures can be used as photonic crystals, alignment films for liquid crystal and so on. 3D hexagonally packed helical nanostructure of PLLA in the PS matrix was formed by self-assembly of chiral block copolymer PS-PLLA with specific volume fraction (PS267-PLLA118 (fPLLAv=0.33)). After hydrolysis of PLLA blocks, helical nanoporous PS template was obtained. Subsequently, the silica precursor mixture was introduced in PS template by pore-filling process at room temperature. After aging under controlled humidity and then drying under atmosphere, the PS/SiO2 helical nanocomposite was successfully prepared. In addition, we also can prepare the SiO2 nanohelices by degradation of the PS template by UV exposure. As a result, the formation of inorganic nanoobjects and inorganic/organic nanocomposites from the degradable block copolymers represents an excellent way for the manufacturing of materials in nanoscale through templation.

    Abstract I Contents IV List of Tables VIII Figures Captions IX Chapter 1 Introduction 1 1.1 Nanopatterning by Top-down Approach 2 1.1-1 Soft-lithography 2 1.1-2 Scanning Probe Lithography 3 1.1-3 Electron-lithography 4 1.2 Nanopatterning by Bottom-up Approach 4 1.2-1 Self-assembly 5 1.2-2 Self-assembly of Block Copolymers 7 1.2-3 Nanopatterning by Self-assembly of Block Copolymer 8 1.2-3-1 Solution Casting 10 1.2-3-2 Shear-induced Orientation 10 1.2-3-3 Electric Field-induced Orientation 11 1.2-3-4 Surface-induced Orientation 12 1.2-3-5 Patterned Substrate-induced Orientation 12 1.2-3-6 Temperature Gradient-induced Orientation 13 1.2-3-7 Graphoepitaxy-induced Orientation 14 1.2-3-8 Crystallizable Solvent-induced Orientation 14 1.2-3-9 Photo-induced Orientation 15 1.3 Degradable Copolymers 16 1.3-1 PB or PI contained Degradable Block Copolymers 16 1.3-2 PMMA Contained Degradable Copolymers 17 1.3-3 PLA Contained Degradable Block Copolymers 17 1.4 Nanotemplation from Block Copolymers 18 1.4-1 Nanotemplation from Organic-organometallic Block Copolymers 19 1.4-2 Nanotemplation from Amphiphilic Block Copolymers 20 1.4-3 Nanotemplation from Degradable Copolymers 22 1.5 Inorganic Nanohelices and Corresponding Nanocomposites 24 1.5-1 Chemical Vapor Deposition 24 1.5-2 Vapor-solid Growth Process 25 1.5-3. Glancing Angle Deposition (GLAD) 26 1.5-4 Self-assembly of Chiral Surfactant/Inorganic Precursors 27 1.5-5 Self-assembly of Achiral Surfactant/Inorganic Precursors in Nanoconfinement 29 Chapter 2 Objectives 62 Chapter 3 Experimental 67 3.1 Materials 67 3.2 Sample Preparation 68 3.3 Instruments 71 Chapter 4 Results and Discussion 77 4.1 Oriented Lamellar PS-PLLA Thin Films Induced by Crystallizable Solvents .77 4.1-1 Morphologies of PS-PLLA Thin Films 77 4.1-2 Oriented PS130-PLLA106 Nanostructures from BA 78 4.1-3 Lattice Matching Effect for PS130-PLLA106 Nanostructures 80 4.1-4 PS130-PLLA106 Morphology via Directional Eutectic Solidification 80 4.1-5 PS36-PLLA32 Morphology via Directional Eutectic Solidification 81 4.1-6 Crystallization-induced Oriented PS36-PLLA32 Nanostructures 82 4.1-7 Origins of Induced Orientation 84 4.1-8 Nanopatterned Templates by Hydrolysis 87 4.2 Oriented Cylindrical PS-PLLA Thin Films Induced by Solution Casting 87 4.2-1 Phase-separated Morphology 88 4.2-2 Induced Orientation of PS-PLLA Thin Films 89 4.2-3 Evaporation Rate and Solubility Effects 90 4.2-4 Molecular Weight Effect 94 4.2-5 Spin Coating versus Solution Casting 95 4.2-6 Substrate Effect 97 4.2-7 Origins of Induced Orientation 99 4.2-8 Nanopatterned Templates by Hydrolysis 105 4.3 Helical Nanocomposites and Nanohelices from Chiral Degradable PS-PLLA 106 4.3-1 Identification of Nanohelical Structure Phase 108 4.3-2 Helical Nanocomposites 110 4.3-3 Inorganic Nanohelices 112 4.3-4 Problems for Low-modulus Inorganic Nanohelices 114 4.3-5 Potential Applications 116 Chapter 5 Conclusions 137 Chapter 6 References 140 Publications 148 List of Tables Table 1 Varieties of synthesized PS-PLLA and PS-PLA block copolymers 75 Table 2 The selectivity and vapor pressure of solvents 118 Figure Captions Figure 1-1. (a) Topographic nanopattern. (b) Chemical nanopattern. 31 Figure 1-2. Photolithography. 31 Figure 1-3. Soft-lithography. 32 Figure 1-4. (a) Scanning probe lithography is electrically conducting SPM (or STM) tip that is operated in air to anodically oxidize selected regions of a sample surface. (b) After selective etching, the topographic nanopattern was obtained. 32 Figure 1-5. (a) Schematic of magnetic nanoarrays fabrication process. (b)SEM image of magnetic nanoarrays.. 33 Figure 1-6. Examples of static self-assembly. (a) Crystal structure of a ribosome. (b) Self-assembled peptideamphiphile nanofibers. (c) An array of millimeter sized polymeric plates assembled at a water/perfluorodecalin interface by capillary interactions. (d) Thin film of a nematic liquid crystal on an isotropic substrate. (e) Micrometersized metallic polyhedra folded from planar substrates. (f) A three-dimensional aggregate of micrometer plates assembled by capillary forces. 34 Figure 1-7. Examples of dynamic self-assembly. (a) An optical micrograph of a cell with fluorescently labeled cytoskeleton and nucleus (b) Reaction-diffusion waves in a Belousov-Zabatinski reaction in a 3.5-inch Petri dish. (c) A simple aggregate of three millimeter-sized, rotating, magnetized disks interacting with one another via vortex-vortex interactions. (d) A school of fish. (e) Concentric rings formed by charged metallic beads 1 mm in diameter rolling in circular paths on a dielectric support. (f) Convection cells formed above a micropatterned metallic support. The distance between the centers of the cells is ~ 2 mm. 35 Figure 1-8. (a) Schematic phase diagram showing the various morphologies adopted by non-crystalline linear diblock copolymer. (b) Schematic of morphologies for linear ABC triblock copolymer. A combination of block sequence (ABC, ACB, BAC), composition and block molecular weights provides an enormous parameter space for the creation of new morphologies. 36 Figure 1-9. SPM phase micrographs of PS-PEO with cylindrical microdomains oriented normal to the film surface are obtained after spin coating onto silicon substrate (a) 25K PS-PEO with a film thickness of 140 nm (b) 90K PS-PEO with a film thickness of 150 nm. 37 Figure 1-10. (a) PS-PEO thin films obtained by spin-coating: SPM phase micrograph of a spin-coated sample, (b) SPM phase micrograph after annealing for 48 hr in the benzene vapor. 37 Figure 1-11. (a) Schematic of the roll-caster used to generate nanoscopically oriented films. Two independent, motorcontrolled, parallel rollers counter-rotate at a constant frequency. The rollers are separated by a micrometer-controlled gap. A viscous block copolymer solution is introduced into the gap region and allowed to undergo microphase separation in the presence of the flow field. After slow evaporation of the solvent an oriented film preferentially forms on the stainless-steel roller.31 (b) Schematic diagram of the nanoscale alignments that can be induced in lamellar block copolymers: perpendicular and parallel. The third principal projection is termed transverse. 38 Figure 1-12. (a) Schematic of shear-alignment. (b) The SPM micrograph of PS-PEP thin film after shear-alignment; the inset shows the Fast Fourier transforms (FFTs). 39 Figure 1-13. Schematic of electric field-induced orientation. (a) An asymmetric diblock copolymer annealed above the glass transition temperature of the copolymer between two electrodes under an applied electric field, forming a hexagonal array of cylinders oriented normal to the film substrate. (b) After removal of the minor component by UV exposure, a nanoporous film is formed. 40 Figure 1-14. SPM phase micrographs. Micrographs are from thin films of PS-PMMA symmetric diblock copolymer with a random copolymer (red) anchored either. (a) to the substrate only; or (b) to the substrate and air surface. Scale bar, 100 nm. Insets indicate the orientation of the lamellar morphology in the films. 40 Figure 1-15. Schematic representation of the strategy used to create chemically nanopatterned surfaces and investigate the epitaxial assembly of block-copolymer domains. (a) A SAM of PETS was deposited on a silicon wafer. (b) Photoresist was spin-coated on the SAM-covered substrate, and (c) patterned by EUV-IL with alternating lines and spaces of period Ls. (d) The topographic pattern in the photoresist was converted to a chemical pattern on the surface of the SAM by irradiating the sample with soft X-rays in the presence of oxygen. (e) The photoresist was then removed with repeated solvent washes. (f) A symmetric, lamella-forming PS- PMMA copolymer of period Lo was spin-coated onto the patterned SAM surface and (g) annealed, resulting in surface directed block-copolymer morphologies. Chemically modified regions of the surface presented polar groups containing oxygen and were preferentially wetted by the PMMA block, and unmodified regions exhibited neutral wetting behavior by the block copolymer. 41 Figure 1-16. Schematic of cell used to hold polymer sample. The surfaces on either side are exposed to thin sheets of Teflon. Key: (a) front view of the temperature cell and (b) cross-sectional view of the temperature cell at the center. 41 Figure 1-17. SPM micrograph of PS-PVP film on the top of a mesa (spacing = 4.5 μm). 42 Figure 1-18. Diagrams showing structural evolution during the directional eutectic solidification and epitaxial crystallization of the block copolymer from the crystallizable solvent. (a) Homogeneous solution of PS-PE in BA between two glass substrates. (b) Directional solidification forms BA crystals coexisting with a liquid layer of more concentrated polymer. (c) Second directional solidification, showing the eutectic liquid layer transforming into BA crystal (which grows on the pre-eutectic BA crystal) and an ordered lamellar block copolymer. (d) Because of the highly asymmetric composition of the block copolymer and the epitaxial crystallization of the PE in contact with the BA substrate, the flat interfaces of vertically oriented lamellae are unstable, and spontaneously deform in order to achieve a more preferred interfacial curvature and allow epitaxial growth of PE. (e) The layers transform into an array of vertically oriented, pseudohexagonally packed semicrystalline PE cylinders. 43 Figure 1-19. (a) Scheme of LC alignment and microphase-separated structures in the irradiated and un-irradiated area of the block copolymer films. (b) SPM phase micrograph after photo-induced orientation. 44 Figure 1-20. (a) The schematic of process. TEM micrographs of (b) a spherical microdomain monolayer film before RIE. The lighter regions are the PB domains that were degraded and removed by ozone, and the darker backgroundis the PS matrix. (c) Hexagonally ordered arrays of holes in silicon nitride after RIE. (d) SEM micrographs of a partially etched, ozonated monolayer film of spherical microdomains. After the continuous PS matrix at top was taken off, the empty PI domains were exposed (as holes) and appear darker in the micrograph. (e) An SEM micrograph of ordered arrays of holes on silicon nitride. 45 Figure 1-21. FESEM micrograph obtained from a PS-PMMA thin film after removing the PMMA by UV degradation. (a) top view (b) cross-sectional view. 46 Figure 1-22. FESEM micrographs of the degraded PS-PLA fractured surface. The scale bar is 100 nm. 47 Figure 1-23. Tilted SEM micrographs of the fabrication process of Co nanoarrays using PS-PFS thin films. (a) An O2-RIE treated block copolymer thin film on a multilayer of silica, the metallic films and the silicon substrate. (b) Pillars of silicon oxide capped with oxidized PFS after CHF3-RIE. (c) W (tungsten) hard mask on top of a Co layer. (d) Co nanoarrays produced by Ne ion-beam etching. 48 Figure 1-24. (a) TEM micrograph of cross-section of the CdSe/PS-b-P2VP film after annealing at 170 0C for 2 days. (b) Secondary electron SEM micrograph of the surface of a thin film of CdSe/PS-b-P2VP annealed at 170 0C for 2 days taken at 1-kV acceleration voltage. (c) Schematic representation of nanoparticle assembly at the P2VP cylinders. 49 Figure 1-25. SPM height micrographs of micellar thin films: (a) as-cast film; (b) film treated in 0.04 M NaOH(aq). 49 Figure 1-26. Plan-view TEM of cavitated thin film treated with PbAc2(aq) and exposed to H2S(g). 50 Figure 1-27. Pathway to nanostructured materials: (a) diblock copolymer, (b) polygranular cylindrical morphology, (c) macroscopically aligned cylindrical morphology achieved by shear-orientation, (d) removal of minor component to yield nanoporous template, (e) and (f) preparation of nanowires and nanoparticles within the template, respectively, and (g) and (h) removal of template to obtain nanostructured materials. 50 Figure 1-28. TEM micrographs of a spin-coated solution of (a) PPY nanowire and (b) CdS nanoparticles. 51 Figure 1-29. The illustration of pore-filling process. 51 Figure 1-30. Schematic of the process for preparation of the Pd nanoparticles by double gyroid textures. 52 Figure 1-31. TEM micrographs of Pd-loaded gyroid network after reduction in 1-propanol/toluene/Pd(acac)2 for different times at 85 °C: (a) 13, (b) 24, and (c) 48 h. 52 Figure 1-32. Programmable temperature controlled tube furnace.During reaction, the Ar carrier gas was allowed to flow into the tube from both ends and exhaust out from the inner ceramic tube. Iron powder and SiO2/Si mixed powder were loaded in two sample boats located near the center of the furnace right below the Si wafer. CH4 was added into the Ar carrier gas on the left side of the furnace. 53 Figure 1-33. SEM characterization of as-synthesized silicon oxide nanowires. 53 Figure 1-34. SEM micrographs of the as-synthesized ZnO nanobelts, showing nanobelts of sizes 20-60 nm in widths and a large fraction of nanorings and nanohelices. 54 Figure 1-35. SEM micrographs of the as-synthesized ZnO nanobelts with right hand helical nanostructure. The typical width is 30 nm, and pitch distance is rather uniform. 55 Figure 1-36. (a) A schematic model of a nanobelt as viewed parallel to its flat surfaces, displaying the (0001) polar surfaces with a macroscopic dipole moment. (b) Schematic models showing the formation of helical nanostructures by rolling up a nanobelt. 55 Figure 1-37. The helical nanoporous thin film could be fabricated from a GLAD template in the following process: (a) The helical template film is deposited using GLAD. (b) The helical template film is filled with the matrix material. (c) The matrix material is etched back to expose the helical template. (d) The helical template is removed by chemical etching. 56 Figure 1-38. GLAD process. 56 Figure 1-39. (a) A 3-turn SiO2 helical film deposited at α = 85o onto a thin NiCu coated substrate acts as the template for the fabrication of a gold helical nanoporous thin films. (b) After plating, etch-back, and etch-removal of the template, helical pores are clearly visible. 57 Figure 1-40. Schematic of the interaction between the head group of C14-L-AlaS and amino group. 57 Figure 1-41. SEM micrographs of silica helices synthesized with various stirring rates. (a) 200 rpm, (b) 400 rpm, (c) 600 rpm, (d) 800 rpm, and (e) 1200 rpm. 58 Figure 1-42. TEM micrographs of the silica helices shown in Figure 1-35 (a) 200 rpm, (b) 400 rpm, (c) 600 rpm, and (d) 800 rpm. 59 Figure 1-43. Preparation procedure of the helical nanowires using confined nanoporous silica as template. 60 Figure 1-44. (a) Released nanoporous silica nanofibers from the confining alumina matrix using selective chemical etching by 5 wt % phosphoric acid; scale bar: 100 nm. (b) Schematic nanopore morphologies of the confined silica formed inside alumina channels with 55-73nm diameters: stacked donuts (left), D-helix (middle), and S-helix. 60 Figure 1-45. SEM micrographs of released Ag nanowire arrays. (a) Large-area image. Scale bar: 1000m. (b) High-magnification side-view micrograph showing the ordered nanowires. Scale bar: 100 nm. 61 Figure 1-46. TEM micrographs of released nanowires composed of (a,b) Ag, (c) Ni, and (d) Cu2O. Insets in (b-d) are the SAED patterns. Scale bars: 100 nm. 61 Figure 3-1. Polymerization of PS-PLLA. 76 Figure 3-2. Polymerization of PS-PLA. 76 Figure 4-1. TEM micrographs of (a) PS130-PLLA106 (fPLLAv=0.49) and (b) PS36-PLLA32 (fPLLAv=0.49) thin films quenched from 180oC. In all following figures, the insets show the corresponding Fast Fourier transforms. 119 Figure 4-2. (a) TEM micrograph of oriented PS130-PLLA106 (fPLLAv=0.49) nanostructure formed on BA; (b) ED pattern obtained from the central area of the micrograph and shown in correct relative orientation. 119 Figure 4-3. (a) TEM micrograph of oriented PS130-PLLA106 (fPLLAv=0.49) nanostructure formed on HMB; (b) ED pattern from the central area of the micrograph and shown in correct orientation. 120 Figure 4-4. TEM micrograph of PS130-PLLA106 (fPLLAv=0.49) thin film after directional eutectic solidification with BA. 120 Figure 4-5. TEM micrographs of PS36-PLLA32 (fPLLAv=0.49) thin films (a) solidified from eutectic BA-polymer solution; (b) PLLA directionally crystallized on BA substrate at 80oC for 30 min. 121 Figure 4-6. TEM micrographs of PS36-PLLA32 (fPLLAv=0.49) thin films (a) solidified from eutectic HMB-polymer solution and (b) PLLA directionally crystallized on HMB substrate at 80oC for 3 min; (c) 30 min. 121 Figure 4-7. Suggested phase diagrams of crystallizable solvent-polymer systems for (a) strongly segregated high Mn and (b) weakly segregated low Mn PS-PLLA. 122 Figure 4-8. Illustration of morphological evolution for the oriented nanostructures in PS-PLLA. 122 Figure 4-9. (a) Illustration and (b) FESEM micrograph of oriented PS130-PLLA106 (fPLLAv=0.49) lamellar thin films induced by a crystallizable solvent after hydrolysis of PLLA. 123 Figure 4-10. The TEM micrographs of solution-cast (a) PS85-PLLA41 (fPLLAv=0.35); (b) PS197-PLLA72 (fPLLAv=0.3); (c) PS280-PLLA97 (fPLLAv=0.29) and (d) PS364-PLLA109 (fPLLAv=0.26). The corresponding azimuthally scanned one-dimensional SAXS profiles are also obtained as shown. 124 Figure 4-11. (a) The tapping-mode SPM phase micrograph and (b) TEM micrograph stained by RuO4 for spin-coated PS364-PLLA109 (fPLLAv=0.26) thin films on glass slide from chlorobenzene. 125 Figure 4-12. The tapping-mode SPM phase micrographs of the surfaces of spin coated PS364-PLLA109 (fPLLAv=0.26) thin films on glass slide by using different selective solvents for spin coating: (a) THF (vapor pressure at 20oC: 131.5 mmHg); (b) benzene (vapor pressure at 20oC: 70 mmHg); (c) chlorobenzene (vapor pressure at 20oC: 12 mmHg); (d) very slow evaporation rate. The insets show the Fourier-transform patterns of the SPM micrographs. 125 Figure 4-13. The tapping-mode SPM phase micrographs of the surfaces of spin coated PS364-PLLA109 (fPLLAv=0.26) thin films on glass slide by using different neutral solvents for spin coating: (a) chloroform (vapor pressure at 20oC: 159.6 mmHg); (b) 1,2-dichloroethane (vapor pressure at 20oC: 61 mmHg); (c) 1,1,2-trichloroethane (vapor pressure at 20oC: 17.1 mmHg) 126 Figure 4-14. The TEM micrographs of the spin-coated PS364-PLLA109 (fPLLAv=0.26) thin films on glass slide by using different neutral solvents for spin coating: (a) chloroform (vapor pressure at 20oC: 159.6 mmHg); (b) 1,2-dichloroethane (vapor pressure at 20oC: 61 mmHg); (c) 1,1,2-trichloroethane (vapor pressure at 20oC: 17.1 mmHg) 126 Figure 4-15. The tapping-mode SPM phase micrographs of spin-coated thin films on glass slide from chlorobenzene: (a) PS364-PLLA109 (fPLLAv=0.26); (b) PS280-PLLA97 (fPLLAv=0.29); (c) PS197-PLLA72 (fPLLAv=0.3) and (d) PS85-PLLA41 (fPLLAv=0.35). The inset shows the enlarged area of the micrograph. 127 Figure 4-16. The tapping-mode SPM phase micrographs of solution-cast film on glass slide from selective solvent (chlorobenzene) at (a) PS364-PLLA109 (fPLLAv=0.26) and (b) PS355-PLA112 (fPLAv=0.27). 128 Figure 4-17. The tapping-mode SPM phase micrographs of solution-cast film on glass slide from neutral solvent (1,1,2-trichloroethane) at (a) PS364-PLLA109 (fPLLAv=0.26) and (b) PS355-PLA112 (fPLAv=0.27). 128 Figure 4-18. The tapping-mode SPM phase micrographs of spin-coated PS355-PLA112 (fPLAv=0.27) thin films on glass slide from chlorobenzene. 129 Figure 4-19. (a) Before hydrolysis; (b) after hydrolysis of the tapping-mode SPM height micrographs of the morphology at the bottom of nanopatterns for spin-coated PS364-PLLA109 (fPLLAv=0.26) thin films on glass slide from chlorobenzene at ambient temperature. 129 Figure 4-20. The tapping-mode SPM (a) height and (b) phase micrograph of the morphology at the bottom of nanopatterns for spin-coated PS364-PLLA109 (fPLLAv=0.26) thin film on glass slide at 50oC. 130 Figure. 4-21. The tapping-mode SPM phase micrographs of spin-coated PS364-PLLA109 (fPLLAv=0.26) thin films on various surfaces from chlorobenzene: (a) glass slide; (b) carbon-coated glass slide; (c) indium tin oxide (ITO) glass; (d) silicon wafer. 130 Figure 4-22. The Schematic illustrations of cross section view for PS-PLLA thin films by spin coating at (a) room temperature and (b) 50oC. 131 Figure 4-23. The Schematic illustration of formation of PS-PLLA nanopattern prepared by spin coating, similar to the mechanism proposed by Kim and co-workers, where fs is the volume fraction of solvent and d is the depth of thin film. 131 Figure 4-24. The (a) top view and (b) cross-section view FESEM micrographs of spin-coated PS364-PLLA109 (fPLLAv=0.26) thin films on silicon wafer from chlorobenzene at 50oC after hydrolysis. 132 Figure 4-25. (a) 3D tapping-mode SPM height micrograph of SPM for spin-coated PS364-PLLA109 (fPLLAv=0.26) thin films on glass slides after hydrolysis. (b) Schematic illustration of PS-PLLA nanopattern prepared by spin coating. 132 Figure 4-26. Schematic illustration of the experimental procedure for the preparation of helical nanocomposites and inorganic nanohelices via chiral block copolymer (PS267-PLLA118 (fPLLAv=0.33)) templates.. 133 Figure 4-27. Transmission electron microscopy (TEM) mass-thickness-contrast micrographs of 50nm-thickness microsections for (a) RuO4 staining PS-PLLA helical nanostructure (PS267-PLLA118 (fPLLAv=0.33)); (b) PS/SiO2 helical nanocomposite without staining. 133 Figure 4-28. TEM mass-thickness-contrast micrographs of (a) 70nm-thickness; (b) 150nm-thickness microsections for PS/SiO2 helical nanocomposites. Schematic illustrations of the helical nanocomposites with (c) 70nm-thickness; (d) 150nm-thickness along the central axes of the nanohelices. Insets represent the corresponding top-view TEM projection micrographs from the helical nanocomposites. 134 Figure 4-29. (a) Field emission scanning electron microscopy (FE-SEM) micrograph; (b) schematic illustration and (c) EDX of SiO2 nanohelices from PS/SiO2 helical nanocomposites after 24hr UV treatment (λ = 254 nm). 135 Figure 4-30. FE-SEM micrograph and (b) schematic illustration of SiO2 helices after partially removing PS template by UV degradation. 135 Figure 4-31. FE-SEM micrograph of SiO2 helices after drying by supercritical fluid and then removing PS template by UV degradation. 136 Figure 4-32. FE-SEM micrograph of SiO2 nanohelices after sintering at 500oC (heating rate = 1 oC/min). 136

    (1) For a recent review, see Park, C.; Yoon, J.; Thomas, E. L. Polymer 2003, 44, 6725.
    (2) Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
    (3) Moreau, W.M. Semiconductor lithography: principles and materials New York: Plenum; 1988.
    (4) Smith, H. I.; Schattenberg, M. L.; Hector, S. D.; Ferrera, J. Moon, E. E.; Yang, I. Y.; Burkhardt, M. Microelctron Engng 1996, 32, 143.
    (5) Yang, P.; Wirnsberger, G.; Huang, H. C.; Cordero, S. R.; McGehee, M. D.; Scott, B.; Deng, T.; Whitesides, G. M.; Chmelka, B. F.; Buratto, S. K.; Stucky, G. D. Science 2000 , 287, 465.
    (6) Unger, M. A.; Chou, H. P.; Thorsen, T.; Scherer, A.; Quake, S. R. Science 2000, 288, 113.
    (7) Chien, S. S.; Wu, C. L.; Chou, Y. C.; Chen, T. T.; Gwo,S.; Hsieh, W. F. Appl. Phys. Lett. 1999, 75, 2429.
    (8) Broers, A. N.; Molzen, W.; Cuomo, J.; Wittels, N. Appl. Phys. Lett. 1976, 29, 596.
    (9) Chou, S. Y.; Wei, M. S.; Krauss, P. R.; Fischer, P. B. J. Appl. Phys. 1994, 76, 6673.
    (10) Hyde S, Anderson S, Larsson K, Blum Z, Landh T, Lidin S, Ninham B. W. The language of shape. New York: Elsevier; 1997.
    (11) Ball P. Made to Measure. Biomaterials, 1997. New York, Chapter 4, Only natural.
    (12) Rapaport, H.; Moller, G.; Knobler, C. M.; Jensen, T. R.; Kjaer, K.; Leiserowitz L.; Tirrell, D. A. J. Am. Chem. Soc. 2002, 124, 9342.
    (13) Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
    (14) Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
    (15) Fasolka, M.; Mayes, A. M. Ann. Rev. Mater. Res. 2001, 31, 323.
    (16) Zheng, W.; Wang, Z.-G. Macromolecules 1995, 28, 7215.
    (17) Abetz, V. Supramolecular polymers. New York: Marcel Dekker, 2000.
    (18) Hashimoto, T.; Tsutsumi, K.; Funaki, Y. Langmuir 1997, 13, 6869.
    (19) van Dijk, M. A.; van den Berg, R. Macromolecules 1995, 28, 6773.
    (20) Kim, G.; Libera, M. Macromolecules 1998, 31, 2569.
    (21) Fukunaga, K.; Elbs, H.; Magerle, R.; Krausch, G. Macromolecules, 2000, 33, 947.
    (22) Lin, Z.; Kim, D. H..; Wu, X.; Boosahda, L.; Stone, D.; LaRose, L.; Russell, T. P. Adv. Mater. 2002, 14, 1373.
    (23) Kim, S. H.; Misner, M. J.; Xu, T.; Kimura, M.; Russell, T. P. Adv. Mater. 2004, 16, 226.
    (24) Mansky, P.; Harrison, C. K.; Chaikin, P. M.; Register, R. A.; Yao, N. Appl. Phys. Lett. 1996, 68, 2586.
    (25) Lammertink, R. G. H.; Hempenius, M. A.; Van den Enk, J. E.; Chan, V. Z.-H.; Thomas, E. L.; Vancso, G. J. Adv. Mater. 2000, 12, 98.
    (26) Hahm, J.; Sibener, S. J. Langmuir 2000, 16, 4766.
    (27) Ho, R.-M.; Tseng, W.-H.; Fan, H.-W.; Chiang Y.-W.; Lin, C.-C.; Huang, B.-H.; Kao, B.-T. Polymer 2005, 46, 9362.
    (28) Keller, A.; Pedemonte, E.; Willmouth, F. M. Nature 1970, 225, 538.
    (29) Albalak, R. J.; Thomas, E. L.; J. Polym. Sci. Part B Polym. Phys. 1993, 32, 37.
    (30) Koppi, K. A.; Tirrell, M.; Bates, F. S. Phys. Rev. Lett. 1993, 70, 1449.
    (31) Honeker, C. C.; Thomas, E. L.; Albalak, R. J.; Hajduk, D. A.; Gruner, S. M.; Capel, M. C. Macromolecules 2000, 33, 9395.
    (32) Chen, Z.-R.; Kornfield, J. A.; Smith, S. D.; Grothaus, J. T.; Satkowski, M. M. Science 1997, 277, 1248.
    (33) Angelescu, D. E.; Waller, J. H.; Adamson, D. H.; Deshpande, P; Chou, S. Y.; Register, R. A.; Chaikin, P. M. Adv. Mater. 2004, 16, 1736.
    (34) Angelescu, D. E.; Waller, J. H.; Register, R. A.; Chaikin, P. M. Adv. Mater. 2005, 17, 1878.
    (35) Morkved, T. L.; Lu, M.; Urbas, A. M.; Ehrichs, E. E.; Jaeger, H. M.; Mansky, P.; Russell, T. P. Science 1996, 273, 931.
    (36) Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi,T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Science 2000, 290, 2126.
    (37) Mansky, P.; Liu, Y.; Huang, E.; Russell, T. P.; Hawker, C. Science 1997, 275, 1458.
    (38) Huang, E.; Rockford, L.; Russell, T. P.; Hawker, C. J. Nature 1998, 395, 757.
    (39) Rockford, L.; Liu, Y.; Mansky, P.; Russell, T. P. Phys. Rev. Lett. 1999, 82, 2602.
    (40) Heier, J.; Genzer, J.; Kramer, E. J.; Bates, F. S.; Walheim, S.; Krausch, G. J. Chem. Phys. 1999, 111, 11101.
    (41) Kim, S. O.; Solak, H. H.; Stoykovich, M. P.; Ferrier, N. J.; dePablo, J. J.; Nealey, P. F. Nature, 2003, 424, 411.
    (42) Hashimoto, T.; Bodycomb, J.; Funaki, Y.; Kimishima, K. Macromolecules 1999, 32, 952.
    (43) Segalman, R. A.; Yokoyama, H.; Kramer, E. J. Adv. Mater. 2001, 13, 1152.
    (44) Cheng, J. Y.; Ross, C. A.; Thomas, E. L.; Smith, H. I.; Vancso, G. J. Appl. Phys. Lett. 2002, 81, 3657.
    (45) De Rosa, C.; Park, C.; Thomas, E. L.; Lotz, B. Nature 2000, 405, 433.
    (46) De Rosa, C.; Park, C.; Lotz, B.; Wittmann, J. C.; Fetters, L. J.; Thomas, E. L. Macromolecules 2000, 33, 4871.
    (47) Park, C.; De Rosa, C.; Thomas, E. L. Macromolecules 2001, 34, 2602.
    (48) Ho, R.-M.; Hsieh, P.-Y.; Tseng, W.-H.; Lin, C.-C.; Huang, B.-H.; Lotz, B. Macromolecules 2003, 36, 9085.
    (49) Park, C.; De Rosa, C.; Lotz, B.; Fetters, L. J.; Thomas, E. L. Macromol. Chem. Phys. 2003, 204, 1514.
    (50) Tseng, W.-H.; Hsieh, P.-Y.; Ho, R.-M.; Huang, B.-H.; Lin, C.-C.; Lotz, B. Macromolecules 2006, 39, 7071.
    (51) Morikawa, Y.; Nagano, S.; Watanabe, K.; Kamata, K.; Iyoda, T. Seki, T. Adv. Mater. 2006, 18, 883.
    (52) Yu, H.; Iyoda, T.; Ikeda T. J. Am Chem. Soc. 2006, 128, 11010.
    (53) Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Science 1997, 276, 1401.
    (54) Thurn-Albrecht, T.; Steiner, R.; DeRouchey, J.; Stafford, C. M.; Huang, E.; Bal, M.; Tuominen, M.; Hawker, C. J.; Russell T. P. Adv. Mater. 2000, 12, 787.
    (55) Zalusky, A. S.; Olayo-Valles, R.; Taylor, C. J.; Hillmyer, M. A. J. Am Chem. Soc. 2001, 123, 1519.
    (56) Cheng, J. Y.; Ross, C. A.; Chan, V. Z. H.; Thomas, E. L.; Rob, G. H.; Lammertink, R. G. H.; Vancso, G. J. Adv. Mater. 2001, 13, 1174.
    (57) Lin, Y.; Boker, A.; He1, J.; Sill, K.; Xiang, H.; Abetz, C.; Li, X.; Wang, J.; Emrick, T.; Long, S.; Wang, Q.; Balazs, A.; Russell, T. P. Nature 2005, 434, 55.
    (58) Boontongkong, Y.; Cohen, R. E. Macromolecules 2002, 35, 3647.
    (59) Johnson, B. J. S.; Wolf, J. H.; Zalusky, A. S.; Hillmyer, M. A. Chem. Mater. 2004, 16, 2909.
    (60) Lo, K.-H.; Tseng, W.-H.; Ho, R.-M. Macromolecules 2007, 40, 2621.
    (61) Adachi, M.; Okumura, A.; Sivaniah, E.; Hashimoto, T. Macromolecules 2006, 39, 7352.
    (62) Hu, J.; Odom, T. W.; Lieber, C. M. Acc. Chem. Res. 1999, 32, 435.
    (63) Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Science 2002, 297, 787.
    (64) Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947.
    (65) Zhang, H. F.; Wang, C. M.; Wang, L. S. Nano Lett. 2002, 2, 941.
    (66) Zhang, H. F.; Wang, C. M.; Buck, E. C.; Wang, L. S.Nano Lett. 2003, 3, 577.
    (67) Kong, X. Y.; Wang, Z. L. Nano Lett. 2003, 3, 1625.
    (68) Kong, X. Y.; Ding, Y.; Yang, R.; Wang, Z. L. Science 2004, 303, 1348.
    (69) Gao, P. X.; Ding, Y.; Mai, W.; Hughes, W. L.; Lao, C.; Wang, Z. L. Science 2005, 309, 1700.
    (70) Sit, J. C.; Broer, D. J.; Brett, M. J. Adv. Mater. 2000, 12, 371.
    (71) Thiel, M.; Decker, M.; Deubel, M.; Wegener, M.; Linden, S.; Freymann G. Adv. Mater. 2007, 19, 207.
    (72) Kennedy, S. R.; Brett, M. J.; Toader, O.; John, S. Nano Lett. 2002, 2, 59.
    (73) Hrudey, P. C. P.; Szeto, B.; Brett, M. J. Appl. Phys. Lett. 2006, 88, 251 106.
    (74) Elias, A. L.; Harris, K. D.; Brett, M. J. J. Micro. Sys. 2004, 13, 808.
    (75) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710.
    (76) Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D. Nature 1994, 368, 317.
    (77) Tanev, P. T.; Pinnavaia, T. J. Science 1995, 267, 865.
    (78) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.
    (79) Antonelli, D. M.; Ying, J. Y. Angew. Chem. Int. Ed. Engl. 1996, 35, 426.
    (80) Che, S.; Liu, Z.; Ohsuna, T.; Sakamoto, K.; Tersarki, O.; Tatsumi, T. Nature 2004, 429, 281.
    (81) Ohsuna, T.; Liu, Z.; Che, S.; Terasaki, O. Small 2005, 233.
    (82) Jin, H.; Liu, Z.; Ohsuna, T.; Ohsuna, T.; Inoue, Y.; Sakamoto, K.; Nakanishi, T.; Ariga, K.; Che S. Adv. Mater. 2006, 18, 593.
    (83) Wu, Y.; Cheng, G.; Katsov, K.; Sides, S. W.; Wang, J.; Tang, J.; Fredrickson, G. H.; Moskovits, M.; Stucky, G. D. Nat. Mater. 2004, 3, 816.
    (84) Wu, Y.; Livneh, T. Zhang, Y. X.; Cheng, G.; Wang, J.; Tang, J.; Moskovits, M.; Stucky, G. D. Nano Lett. 2004, 4, 2337.
    (85) Ko, B.-T.; Lin, C.-C. J. Am. Chem. Soc. 2001, 123, 7973.
    (86) Ho, R.-M.; Chiang, Y.-W.; Tsai, C.-C.; Lin, C.-C.; Ko, B.-T.; Huang, B.-H. J. Am. Chem. Soc. 2004, 126, 2704.
    (87) Tao, L.; Luan, B.; Pan, C.-Y. Polymer 2003, 44, 6725.
    (88) Spatz, J. P.; Sheiko, S.; Möller, M. Adv. Mater. 1996, 8, 513.
    (89) Cartier, L.; Okihara, T.; Ikada, Y.; Tsuji, H.; Puiggali, J.; Lotz, B. Polymer 2000, 41, 8909.
    (90) Sarma, K. R.; Shlichta, P. J.; Wilcox, W. R.; Lefever, R. A. J. Cryst. Growth 1997, 174, 487.
    (91) Holmbäck, X.; Rasmuson, A. C. J. Cryst. Growth 1999, 199, 780.
    (92) Smith, H. I.; Schattenberg, M. L.; Hector, S. D.; Ferrera, J. Moon, E. E.; Yang, I. Y.; Burkhardt, M. Microelctron Engng 1996, 32, 143.
    (93) Mark, J.E. Physical Properties of Polymers Handbook. New York: AIP Press; 1996.
    (94) Blomqvista, J.; Mannforsa, B.; Pietilä, L. O. Polymer 2002, 43, 4571.
    (95) Auras, R.; Harte, B.; Selke, S. Macromol. Biosci. 2004, 4, 835.
    (96) Vitt, E.; Shull, K. R. Macromolecules 1995, 28, 6349.
    (97) Olayo-Valles, R.; Lund, M. S.; Leighton, C.; Hillmyer, M. A. J. Mater. Chem. 2004, 14, 2729.
    (98) Hanley, K. J.; Lodge, T. P.; Huang, C. I. Macromolecules 2000, 33, 5918.
    (99) Lodge, T. P.; Pudil, B.; Hanley, K. J. Macromolecules 2002, 35, 4707.
    (100) Lodge, T. P.; Hanley, K. J.; Pudil, B.; Alahapperuma, V. Macromolecules 2003, 36, 816.
    (101) Hozumi, A.; Yokogawa, Y.; Kameyama, T.; Hiraku, K.; Sugimura, H.; Takai, O.; Okido M. Adv. Mater. 2000, 12, 985.
    (102) Ho, R.-M.; Chiang Y.-W.; Tseng, W.-H.; Chen, C.-K.; Burger, C.; Hsiao, B. S.; Thomas, E. L. in preparation.
    (103) Pierre, A. C. Introduction to Sol-gel Process 1996.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE