研究生: |
吳宗芳 Tsung-fang Wu |
---|---|
論文名稱: |
半線性橢圓方程正解的存在性與多樣性 Existence and Multiplicity of Positive Solutions of Semilinear Elliptic Equations |
指導教授: |
王懷權
Hwai-chiuan Wang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 英文 |
論文頁數: | 89 |
中文關鍵詞: | 半線性橢圓方程 、正解 、巴萊斯麥爾 、多重解 |
外文關鍵詞: | Semilinear Elliptic Equations, Positive Solutions, Palais-Smale, Multiple Solutions |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文主要分為三大部份:第一部份先論述一些如何應用巴萊斯麥爾理論來解決ㄧ個半線性橢圓方程在一些無界定義域正解的存在性問題。並且證明這些方法彼此是等價之外,更近一步證明它們與定義域的指數有一些充分必要的條件及半線性橢圓方程在一些其它無界定義域正解的存在性問題。在這第一部份之中我們另外探討一些定義域的指數 ,巴萊斯麥爾數列與巴萊斯麥爾條件之間的一些關係。
在第二部份,主要利用ㄧ些軸對稱界定義域的對稱破裂,來證明巴萊斯麥爾條件與定義域的指數有一些充分必要的條件,並利用如此的性質,來證明半線性橢圓方程在一些非凸軸對稱界定義域(有可能是無界)三個正解的存在性問題,而且這三個正解其中一個是軸對稱,其它兩個是非軸對稱。
最後,我們證明ㄧ個在無窮帶子的對稱巴萊斯麥爾分解定理,並且應用它去證明半線性橢圓方程在一些無窮帶子的外定義域正解的存在性問題。
[1] Adams, R. A., Sobolev Space, Academic Press, New York 1975.
[2] Benci, V. and Cerami, G., Positive solutions of some nonlinear elliptic equations in exterior domain, Arch. Rational Mech. Anal. 99 (1987), 283-300.
[3] Berestycki, H. and Lions, P. L., Nonlinear scalar field equations. I. Existence of ground state, Arch. Rat. Mech. Anal., 82(1983), 313-345.
[4] Brézis, H., Analyse Fonctionnelle, Theorie et Applications, Masson, Paris, 1983.
[5] Brézis, H. and Nirenberg, L., Remarks on finding critical points, Comm. Pure Appl. Math., 44(1991), 939-963.
[6] Chabrowski, J., Variational Methods for Potential Operator Equations, Walter de Gruyter Studies in Mathematics 24, Berlin New York, 1997.
[7] Chabrowski, J., Weak Convergence Methods for Semilinear Elliptic Equations, World Scientific, 1999.
[8] Chen, K. C., Chen, K. J., and Wang, H. C., Symmetry of positive solutions of semilinear elliptic equations on infinite strip domains, J. Differential Equations, 148(1998), 1-8.
[9] Chen, K. J., Lee, C. S., and Wang, H. C., Semilinear elliptic problems in interior and exterior flask domain, Commun. Appl. Nonlinear Anal., 5(1998), 81-105.
[10] Chen, G., Ni, W. M., and Zhou, J., Algorithms and visualization for solution of nonlinear elliptic problems, International Journal of Bifurcation and Chaos, 10(2000), 1565-1612.
[11] Chen, K. J. and Wang, H. C., A necessary and sufficient condition for Palais-Smale conditions, SIAM Journal on Math. Anal., 31(1999), 154-165.
[12] Dancer, E. N., The effect of domain shape on the number of positive solution of certain nonlinear equations, J. of Diff. Equation 74(1988), 120-156.
[13] Del Pino, M. A. and Felmer, P. L., Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. PDE, 4(1996), 121-137.
[14] Del Pino, M. A. and Felmer, P. L., Least energy solutions for elliptic equations in unbounded domains, Proc. Royal Society Edinburgh, 126A(1996), 195-208.
[15] Esteban, M. J. and Lions, P. L., Existence and non-existence results for semilinear elliptic problems in unbounded domains, Proc. Royal Society Edinburgh, 93A(1982), 1-12.
[16] Gidas, B., Ni, W. M., and Nirenberg, L., Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1978), 209-243.
[17] Gidas, B., Ni, W. M., and Nirenberg, L., Symmetry of positive solutions of nonlinear elliptic equations in {R}^{N}, Adv. in Math. Suppl. Stud., 7A (1981), 369-402.
[18] Gilbarg, D. and Trudinger, N. S., Elliptic Partial Differential Equations of Second order, Springer-Verlag, New York, 1983.
[19] Grisvard, P., Elliptic Problems in Nonsmooth Domains, Pitman Advanced Publishing Program, 1985.
[20] Han Q. and Lin F. H., Elliptic Partial Differential Equations, Courant Institute of Math. Sciences, New York University.
[21] Kwong, M. K., Uniqueness of positive solution of \Delta u-u+u^{p}=0 in {R}^{N}, Arch. Rat. Math. Anal. 105(1989), 243-266.
[22] Lions, P. L., The concentration-compactness principle in the calculus of variations. The locally compact case. I, II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109-145; 223-283.
[23] Lions, P. L., Symetrie et compacite dans les espaces de Sobolev, J. of Functional Anal., 49 (1982), 315-334.
[24] Lien, W. C., Tzeng, S. Y., and Wang, H. C., Existence of solutions of semilinear elliptic problems on unbounded domains, Diff. and Integ. Eqns., 6(1993), 1281-1298.
[25] Palais, R. S., The principle of symmetric criticality, Comm. Math. Phys. 69(1979), 19-30.
[26] Palais, R. S. and Smale, S., A generalized Morse theory, Bull. Amer Math. Soc. 70 (1964), 165-171.
[27] Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, Regional Conference Series in Mathematics, American Mathematical Society, 1986.
[28] Struwe, M., Variational Methods, Springer-Verlag, Berlin-Heidelberg, Second edition, 1996.
[29] Wang, H. C., A Palais-Smale approach to problems in Esteban-Lions domains with holes, Trans. Amer. Math. Soc., 352(2000), 4237-4256.
[30] Willem, M., Minimax Theorems, Birkhauser Verlag, Basel, 1996.
[31] Zeidler, E., Nonlinear Functional Analysis and its Applications II/A, Springer-Verlag, New York, 1989.