研究生: |
李欣螢 Li, Hsin-Ying |
---|---|
論文名稱: |
以溫度躍升法搭配共軛焦螢光擷取系統研究牛血清白蛋白於原生態溫度區間且屬於階層-0之蛋白質動態過程 Investigating the Tier-0 Protein Dynamics of Bovine Serum Albumin in the Native Condition with Confocal Fluorescent Temperature Jump |
指導教授: |
朱立岡
Chu, Li-Kang |
口試委員: |
洪嘉呈
Horng, Jia-Cherng 杜玲嫻 Tu, Ling-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 117 |
中文關鍵詞: | 牛血清白蛋白 、色胺酸 、螢光溫度計 、生理條件 、圓二色光譜術 、螢光光譜術 、溫度躍升法 、共軛焦螢光擷取系統 、福斯特共振能量轉移 、蛋白質動力學 、阿瑞尼斯方程式 、表觀活化能 |
外文關鍵詞: | Bovine serum albumin (BSA), Tryptophan (Trp), Fluorescent thermometer, Physiological condition, Circular dichroism spectroscopy, Fluorescence spectroscopy, Temperature-jump method, Confocal fluorescent system, Förster resonance energy transfer, Protein dynamics, Arrhenius equation, Apparent activation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蛋白質的構形會受到溫度、壓力、酸鹼及化學試劑等外在環境改變影響,且唯有正確的構形才能使蛋白質具有正常的生理功能及活性,錯誤的構形則可能導致疾病之產生,因此了解蛋白質構形變化為相當重要的研究。本篇論文之研究對象為牛血清白蛋白,由於其與人類血清白蛋白之同源性高,故常作為模型蛋白而被廣泛研究。過去有關牛血清白蛋白熱致構形改變之研究多使用靜態光譜偵測,且著重在高於50 °C後不可逆之變性結果,於原生態溫度區間(25-42 °C)之可逆構形改變則未被廣泛探討。此外,過去研究大多未在符合生理條件下進行實驗,為了更接近生物體內之環境,以正確觀測溫度對於牛血清白蛋白構形之影響,因此本篇論文係以一自組裝式空間暨時間解析溫度躍升螢光系統(具有200 μm之空間解析度)研究接近生理條件(濃度約為40 mg mL-1,pH約為7)下之牛血清白蛋白,於不同起始溫度下且於原生態溫度區間之熱致動態構形改變。當於較低起始溫度時,牛血清白蛋白受約5 °C溫度躍升後之螢光強度變化趨勢與色胺酸相似,然而隨著起始溫度提升,兩者的螢光強度變化趨勢則逐漸相異。吾人以一兩態可逆模型(A ⇌ B)描述牛血清白蛋白受約5 °C溫度躍升後之構形改變動態過程,並透過單一指數函數擬合獲得其表觀速率常數kapp (= kf + kr),發現牛血清白蛋白於較高起始溫度下受溫度躍升後,具有較明顯且較快的動態構形改變。此外,經動力學分析可獲得其表觀活化能Eapp為78 ± 6 kJ mol-1,並將所觀測到牛血清白蛋白於毫秒尺度下發生的熱致動態構形改變歸因於其序列中Trp-134對周圍環境改變的響應。而吾人也擷取牛血清白蛋白靜態變溫螢光光譜,發現其序列中酪胺酸之螢光強度隨溫度上升而增加,推測係因為高溫時牛血清白蛋白發生構形變化的程度較大,使得序列中的色胺酸與酪胺酸之距離變遠,進而減少酪胺酸至色胺酸之福斯特共振能量轉移導致酪胺酸之螢光強度上升,且此論述與溫度躍升螢光系統之實驗結果一致。本篇論文所使用的實驗技術及分析方法提供較大蛋白質於毫秒時域熱致構形改變動態過程以及所涉及之活化能新的研究策略。
A variety of external conditions, such as temperature, pressure, pH, and the addition of chemical denaturants, can induce conformational changes in proteins. Normally functional proteins require a specific conformation, while the misfolding of proteins might lead to numerous diseases. Hence, understanding the protein dynamical process is crucial. Among various proteins, bovine serum albumin (BSA) is usually selected as the alternative of human serum albumin (HSA) in biological researches due to its high homology with HSA. However, most investigations have been carried out using steady-state spectroscopic methods and have focused on the irreversible thermally-induced unfolding of BSA above 50 °C rather than the native configuration at 25-42 °C. Therefore, in this work, a temperature-jump apparatus coupled with confocal fluorescent thermometry of 200 μm spatial resolution was employed to unravel the thermally-induced dynamic process of BSA at different initial temperatures (T0 = 25-42 °C). BSA was prepared at a concentration of ca. 40 mg mL-1 at pH: ca. 7 similar to the physiological condition in all of our experiments. As T0 increased, the fluorescence change evolutions caused by 5 °C temperature jump of BSA gradually differed from pure tryptophan. The results revealed that the conformation changed more apparently and dynamic process of BSA became faster at higher jumped temperature (Tʹ). A reversible two-state model was proposed to extract the kinetics of the dynamic structural changes of BSA at different Tʹ which were fitted using a single exponential component characterized with an apparent rate coefficient, kapp (kf + kr). This thermally-induced dynamic process of BSA in millisecond timescale could be thus characterized with an apparent activation energy (Eapp) of 78 ± 6 kJ mol-1 and could be associated with the response to the structural alteration at the vicinity of Trp-134, which stays at the surface of BSA. Moreover, in the temperature-dependent steady-state BSA fluorescence spectra, the intensity of tyrosines was gradually strengthened as temperature increased, which might be due to less tyrosine-to-tryptophan Förster resonance energy transfer. The combination of the experimental approach and analytical methods provides a new strategy to illustrate the dynamic process on a millisecond timescale of a big protein upon temperature perturbation.
第一章 緒論
1. Ooi, T. Thermodynamics of Protein Folding: Effects of Hydration and Electrostatic Interactions. Adv. Biophys. 1994, 30, 105-154.
2. Stefani, M. Protein Folding and Misfolding on Surfaces. Int. J. Mol. Sci. 2008, 9, 2515-2542.
3. Dobson, C. M. Protein Folding and Misfolding. Nature 2003, 426, 884-890.
4. Yamamoto, K.; Mizutani, Y.; Kitagawa, T. Nanosecond Temperature Jump and Time-Resolved Raman Study of Thermal Unfolding of Ribonuclease A. Biophys. J. 2000, 79, 485-495.
5. Huang, C.-Y.; Balakrishnan, G.; Spiro, T. G. Early Events in Apomyoglobin Unfolding Probed by Laser T-jump/UV Resonance Raman Spectroscopy. Biochemistry 2005, 44, 15734-15742.
6. Meadows, C. W.; Balakrishnan, G.; Kier, B. L.; Spiro, T. G.; Klinman, J. P. Temperature-Jump Fluorescence Provides Evidence for Fully Reversible Microsecond Dynamics in a Thermophilic Alcohol Dehydrogenase. J. Am. Chem. Soc. 2015, 137, 10060-10063.
7. Davis, C. M.; Dyer, R. B. The Role of Electrostatic Interactions in Folding of β‑Proteins. J. Am. Chem. Soc. 2016, 138, 1456-1464.
8. Wirth, A. J.; Liu, Y.; Prigozhin, M. B.; Schulten, K.; Gruebele, M. Comparing Fast Pressure Jump and Temperature Jump Protein Folding Experiments and Simulations. J. Am. Chem. Soc. 2015, 137, 7152-7159.
9. Prigozhin, M. B.; Liu, Y.; Wirth, A. J.; Kapoor, S.; Winter, R.; Schulten, K.; Gruebele, M. Misplaced Helix Slows Down Ultrafast Pressure-Jump Protein Folding. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 8087-8092.
10. Donten, M. L.; Hamm, P. pH-Jump Induced α-helix Folding of Poly-L-glutamic Acid. Chem. Phys. 2013, 422, 124-130.
11. Nölting, B. Protein folding kinetics. Biophysical methods, 2nd ed., Springer, 2006.
12. Phillips, C. M.; Mizutani, Y.; Hochstrasser, R. M. Ultrafast Thermally-Induced Unfolding of RNAse-A. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 7292-7296.
13. Dyer, R. B.; Gai, F.; Woodruff, W. H.; Gilmanshin, R.; Callender, R. H. Infrared Studies of Fast Events in Protein Folding. Acc. Chem. Res. 1998, 31, 709-716.
14. Kubelka, J. Time-Resolved Methods in Biophysics. 9. Laser Temperature-Jump Methods for Investigating Biomolecular Dynamics. Photochem. Photobiol. Sci. 2009, 8, 499-512.
15. Singh, B. R. Basic Aspects of the Technique and Applications of Infrared Spectroscopy of Peptides and Proteins. Infrared Analysis of Peptides and Proteins. American Chemical Society, 1999, pp. 2-37.
16. Austin, R. H.; Beeson, K. W.; Eisenstein, L.; Frauenfelder, H; Gunsalus, I. C. Dynamics of Ligand Binding to Myoglobin. Biochemistry 1975, 14, 5355-5373.
17. Frauenfelder, H.; Sligar, S. G.; Wolynes, P. G. The Energy Landscapes and Motions of Proteins. Science 1991, 254, 1598-1603.
18. Eisenmesser, E. Z.; Millet, O.; Labeikovsky, W.; Korzhnev, D. M.; Wolf-Watz, M.; Bosco, D. A.; Skalicky, J. J.; Kay, L. E.; Kern, D. Intrinsic Dynamics of An Enzyme Underlies Catalysis. Nature 2005, 438, 117-121.
19. Mallamace, F.; Corsaro, C.; Mallamace, D.; Vasi, S.; Vasi, C.; Baglioni, P.; Buldyrev, S. V.; Chen, S.-H.; Stanley, H. E. Energy Landscape in Protein Folding and Unfolding. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 3159-3163.
20. Grimaldo, M.; Roosen-Runge, F.; Hennig, M.; Zanini, F.; Zhang, F.; Jalarvo, N.; Zamponi, M.; Schreiber, F.; Seydel, T. Hierarchical Molecular Dynamics of Bovine Serum Albumin in Concentrated Aqueous Solution Below and Above Thermal Denaturation. Phys. Chem. Chem. Phys. 2015, 17, 4645-4655.
21. Henzler-Wildman, K.; Kern, D. Dynamic Personalities of Proteins. Nature 2007, 450, 964-972.
22. Diez, M.; Zimmermann, B.; Börsch, M.; König, M.; Schweinberger, E.; Steigmiller, S.; Reuter, R.; Felekyan, S.; Kudryavtsev, V.; Seidel, C. A. M.; Gräber, P. Proton-Powered Subunit Rotation in Single Membrane-Bound F0F1-ATP Synthase. Nat. Struct. Mol. Biol. 2004, 11, 135-141.
23. Khodadadi, K.; Sokolov, A. P. Protein Dynamics: From Rattling in A Cage to Structural Relaxation. Soft Matter 2015, 11, 4984-4998.
24. Majorek, K. A.; Porebski, P. J.; Dayal, A.; Zimmerman, M. D.; Jablonska, K.; Stewart, A. J.; Chruszcz, M.; Minor, W. Structural and Immunologic Characterization of Bovine, Horse, and Rabbit Serum Albumins. Mol. Immunol. 2012, 52, 174-182.
25. De Wolf, F. A.; Brett, G. M. Ligand-Binding Proteins: Their Potential for Application in Systems for Controlled Delivery and Uptake of Ligands. Pharmacol. Rev. 2000, 52, 207-232.
26. Merlot, A. M.; Kalinowski, D. S.; Richardson, D. R. Unraveling the Mysteries of Serum Albumin-More Than Just a Serum Protein. Front. Physiol. 2014, 5, 299.
27. Ursache, F. M.; Aprodu, I.; Nistor, O. V.; Bratu, M.; Botez, E.; Stănciuc, N. Probing the Heat‐Induced Structural Changes in Bovine Serum Albumin by Fluorescence Sectroscopy and Molecular Modelling. Int. J. Dairy Technol. 2017, 70, 424-431.
28. Urquiza, N. M.; Naso, L. G.; Manca, S. G.; Lezama, L.; Rojo, T.; Williams, P. A.M.; Ferrer, E. G. Antioxidant Activity of Methimazole–Copper(II) Bioactive Species and Spectroscopic Investigations on the Mechanism of Its Interaction with Bovine Serum Albumin. Polyhedron 2012, 31, 530-538.
29. Topală, T.; Bodoki, A.; Oprean, L.; Oprean, R. Bovine Serum Albumin Interactions with Metal Complexes. Clujul Med. 2014, 87, 215-219.
30. Xiao, Y.; Isaacs, S. N. Enzyme-Linked Immunosorbent Assay (ELISA) and Blocking with Bovine Serum Albumin (BSA) - Not all BSAs are alike. J. Immunol. Methods 2012, 384, 148-151.
31. Steinitz, M. Quantitation of the Blocking Effect of Tween 20 and Bovine Serum Albumin in ELISA Microwells. Anal. Biochem. 2000, 282, 232-238.
32. An, F.-F.; Zhang, X.-H. Strategies for Preparing Albumin-based Nanoparticles for Multifunctional Bioimaging and Drug Delivery. Theranostics 2017, 7, 3667-3689.
33. Yang, W.; Guo, W.; Le, W.; Lv, G.; Zhang, F.; Shi, L.; Wang, X.; Wang, J.; Wang, S.; Chang, J.; Zhang, B. Albumin-Bioinspired Gd:CuS Nanotheranostic Agent for In Vivo Photoacoustic/Magnetic Resonance Imaging-Guided Tumor-Targeted Photothermal Therapy. ACS Nano 2016, 10, 10245-10257.
34. Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248-254.
35. Xu, H.; Yao, N.; Xu, H.; Wang, T.; Li, G.; Li, Z. Characterization of the Interaction Between Eupatorin and Bovine Serum Albumin by Spectroscopic and Molecular Modeling Methods. Int. J. Mol. Sci. 2013, 14, 14185-14203.
36. Wang, Q.; Huang, C. R.; Jiang, M.; Zhu, Y. Y.; Wang, J.; Chen, J.; Shi, J. H. Binding Interaction of Atorvastatin with Bovine Serum Albumin: Spectroscopic Methods and Molecular Docking. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 156, 155-163.
37. Takeda, K.; Shigeta, M.; Aoki, K. Secondary Structures of Bovine Serum Albumin in Anionic and Cationic Surfactant Solutions. J. Colloid Interface Sci. 1987, 117, 120-126.
38. Held P. Quantitation of peptides and amino acids with a Synergy™ HT using UV fluorescence. Winooski, Vermont, USA: BioTek Instruments Inc. 2003, pp. 1-8.
39. Whitmore, L.; Wallace, B. A. Protein Secondary Structure Analyses from Circular Dichroism Spectroscopy: Methods and Reference Databases. Biopolymers 2008, 89, 392-400.
40. Dragan, A. I.; Geddes, C. D. Indium Nanodeposits: A Substrate for Metal-Enhanced Fluorescence in the Ultraviolet Spectral Region. J. Appl. Phys. 2010, 108, 094701.
41. Hayakawa, I.; Kajihara, J.; Morikawa, K.; Oda, M.; Fujio, Y. Denaturation of Bovine Serum Albumin (BSA) and Ovalbumin by High Pressure, Heat and Chemicals. J. Food Sci. 1992, 57, 288-292.
42. Yamasaki, M.; Yano, H.; Aoki, K. Differential Scanning Calorimetric Studies on Bovine Serum Albumin: I. Effects of pH and Ionic Strength. Int. J. Biol. Macromol. 1990, 12, 263-268.
43. Lin, V. J. C.; Koenig, J. L. Raman Studies of Bovine Serum Albumin. Biopolymers 1976, 15, 203-218.
44. Shanmugam, G.; Polavarapu, P. L. Vibrational Circular Dichroism Spectra of Protein Films: Thermal Denaturation of Bovine Serum Albumin. Biophys. Chem. 2004, 111, 73-77.
45. Lu, R.; Li, W.-W.; Katzir, A.; Raichlin, Y.; Yu, H.-Q.; Mizaikoff, B. Probing the Secondary Structure of Bovine Serum Albumin During Heat-Induced Denaturation Using Mid-Infrared Fiberoptic Sensors. Analyst 2015, 140, 765-770.
46. Anand, U.; Jash, C.; Mukherjee, S. Protein Unfolding and Subsequent Refolding: A Spectroscopic Investigation. Phys. Chem. Chem. Phys. 2011, 13, 20418-20426.
47. Cao, X.; Tian, Y.; Wang, Z.; Liu, Y.; Wang, C. BSA Denaturation in the Absence and the Presence of Urea Studied by the Iso-Conversional Method and the Master Plots Method. J. Therm. Anal. Calorim. 2010, 102, 75-81.
48. Edelhoch, H. Spectroscopic Determination of Tryptophan and Tyrosine in Proteins. Biochemistry 1967, 6, 1948-1954.
49. Gally, J. A.; Edelman, G. M. The Effect of Temperature on the Fluorescnece of Some Aromatic Amino Acids and Proteins. Biochim. Biophys. Acta 1962, 60, 499-509.
50. Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed., Springer: Baltimore, Maryland, USA, 2006, pp. 529-575.
51. Vivian, J. T.; Callis, P. R. Mechanisms of Tryptophan Fluorescence Shifts in Proteins. Biophys. J. 2001, 80, 2093-2109.
52. Chiu, M.-J.; Chu, L.-K. Quantifying the Photothermal Efficiency of Gold Nanoparticles Using Tryptophan as an in Situ Fluorescent Thermometer. Phys. Chem. Chem. Phys. 2015, 17, 17090-17100.
53. Skrt, M.; Benedik, E.; Podlipnik, Č.; Ulrih, N. P. Interactions of Different Polyphenols with Bovine Serum Albumin Using Fluorescence Quenching and Molecular Docking. Food Chem. 2012, 135, 2418-2424.
54. Zhang, L.; Yang, Y.; Kao, Y.-T.; Wang, L.; Zhong, D. Protein Hydration Dynamics and Molecular Mechanism of Coupled Water-Protein Fluctuations. J. Am. Chem. Soc. 2009, 131, 10677-10691.
55. Stevenson, K. L.; Papadantonakis, G. A.; LeBreton, P. R. Nanosecond UV Laser Photoionization of Aqueous Tryptophan: Temperature Dependence of Quantum Yield, Mechanism, and Kinetics of Hydrated Electron Decay. J. Photochem. Photobiol. A Chem. 2000, 133, 159-167.
56. Sherin, P. S.; Snytnikova, O. A.; Tsentalovich, Y. P. Tryptophan Photoionization from Prefluorescent and Fluorescent States. Chem. Phys. Lett. 2004, 391, 44-49.
57. Sherin, P. S.; Snytnikova, O. A.; Tsentalovich, Y. P. Competition Between Ultrafast Relaxation and Photoionization in Excited Prefluorescent States of Tryptophan and Indole. J. Chem. Phys. 2006, 125, 144511.
58. Tsentalovich, Y. P.; Snytnikova, O. A.; Sagdeev, R. Z. Properties of Excited States of Aqueous Tryptophan. J. Photochem. Photobiol. A Chem. 2004, 162, 371-379.
59. Bent, D. V.; Hayon, E. Excited State Chemistry of Aromatic Amino Acids and Related Peptides. III. Tryptophan. J. Am. Chem. Soc. 1975, 97, 2612-2619.
60. Fischer, C. J.; Gafni, A.; Steel, D. G.; Schauerte, J. A. The Triplet-State Lifetime of Indole in Aqueous and Viscous Environments: Significance to the Interpretation of Room Temperature Phosphorescence in Proteins. J. Am. Chem. Soc. 2002, 124, 10359-10366.
61. Robbins, R. J.; Fleming, G. R.; Beddard, G. S.; Robinson, G. W.; Thistlethwaite, P. J.; Woolfe, G. J. Photophysics of Aqueous Tryptophan: pH and Temperature Effects. J. Am. Chem. Soc. 1980, 102, 6271-6279.
62. Royer, C. A. Probing Protein Folding and Conformational Transitions with Fluorescence. Chem. Rev. 2006, 106, 1769-1784.
63. Moriyama, Y.; Ohta, D.; Hachiya K.; Mitsui, Y.; Takeda, K. Behavior of Tryptophan Residues of Bovine and Human Serum Albumins in Ionic Surfactant Solutions: A Comparative Study of the Two and One Tryptophan(s) of Bovine and Human Albumins. J. Protein Chem. 1996, 15, 265-272.
64. Albani, J. R. Origin of Tryptophan Fluorescence Lifetimes Part 1. Fluorescence Lifetimes Origin of Tryptophan Free in Solution. J. Fluoresc. 2014, 24, 93-104.
65. Albani, J. R. Origin of Tryptophan Fluorescence Lifetimes. Part 2: Fluorescence Lifetimes Origin of Tryptophan in Proteins. J. Fluoresc. 2014, 24, 105-117.
66. Conchello, J. A.; Lichtman, J. W. Optical Sectioning Microscopy. Nat. Methods. 2005, 2, 920-931.
67. Nwaneshiudu, A.; Kuschal, C.; Sakamoto, F. H.; Rox Anderson, R.; Schwarzenberger, K.; Young, R. C. Introduction to Confocal Microscopy. J. Invest. Dermatol. 2012, 132, 1-5.
68. Schrof, W.; Klingler, J.; Heckmann, W.; Horn, D. Confocal Fluorescence and Raman Microscopy in Industrial Research. Colloid Polym. Sci. 1998, 276, 577-588.
69. Medda, L.; Monduzzi, M.; Salis, A. The Molecular Motion of Bovine Serum Albumin under Physiological Conditions is Ion Specific. Chem. Commun. 2015, 51, 6663-6666.
第二章 實驗儀器原理與架設
1. Skoog, D. A.; West, M. W.; Holler, F. J.; Crouch, S. R. Fundamentals of Analytical Chemistry, 8th ed., Thomson Brooks/Cole: Belmont, CA, 2004, pp. 714-817.
2. Faust, B. Modern Chemical Techniques: An Essential Reference for Students and Teachers. Royal Society of Chemistry, 1997, pp. 92.
3. Harvey, D. Modern Analytical Chemistry, 1st ed., McGraw-Hill: New York, 2000, pp. 380-388.
4. USB4000 Optical Bench Options
http://c1170156.r56.cf3.rackcdn.com/UK_OCE_USB4000_DS.pdf (accessed on 109.07.21)
5. Banerjee, B.; Misra, G.; Ashraf, M. T. Chapter 2 - Circular Dichroism. Data Processing Handbook for Complex Biological Data Sources, Misra, G., Ed.; Academic Press, 2019, pp. 21-30.
6. Büyükköroğlu, G.; Dora, D. D.; Özdemir, F.; Hızel, C. Chapter 15 - Techniques for Protein Analysis. Omics Technologies and Bio-Engineering, Barh, D.; Azevedo, V., Ed.; Academic Press, 2018, pp. 317-351.
7. Greenfield, N. J. Using Circular Dichroism Spectra to Estimate Protein Secondary Structure. Nat. Protoc. 2006, 1, 2876-2890.
8. Wallace, B. A.; Janes, R. W. Modern Techniques for Circular Dichroism and Synchrotron Radiation Circular Dichroism Spectroscopy. IOS Press, 2009.
9. 江素玉;李政怡;馮學深;蔡宛霖;羅祥文 同步輻射圓二色光譜實驗站與應用 科儀新知,2009,第三十卷第五期 98.4,9-17。
10. Rodger, A.; Nordén, B. Circular Dichroism and Linear Dichroism. Oxford University Press Inc.: New York, 1997, pp. 18-22.
11. Whitmore, L.; Wallace, B. A. Protein Secondary Structure Analyses from Circular Dichroism Spectroscopy: Methods and Reference Databases. Biopolymers 2008, 89, 392-400.
12. Holzwarth, G.; Doty, P. The Ultraviolet Circular Dichroism of Polypeptides. J. Am. Chem. Soc. 1965, 87, 218-228.
13. Greenfield, N. J.; Fasman, G. D. Computed Circular Dichroism Spectra for the Evaluation of Protein Conformation. Biochemistry 1969, 8, 4108-4116.
14. Venyaminov, S. Y.; Baikalov, I. A.; Shen, Z. M.; Wu, C.-S. C.; Yang, J. T. Circular Dichroic Analysis of Denatured Proteins: Inclusion of Denatured Proteins in the Reference Set. Anal. Biochem. 1993, 214, 17-24.
15. Bentz, H.; Bächinger, H. P.; Glanville, R.; Kühn, K. Physical Evidence for the Assembly of A and B Chains of Human Placental Collagen in a Single Triple Helix. Eur. J. Biochem. 1978, 92, 563-567.
16. Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental Analysis, 6th ed., Thomson Brooks/Cole: Belmont, CA, 2007, pp. 400-404.
17. Lichtman, J. W.; Conchello, J.-A. Fluorescence Microscopy. Nat. Methods 2005, 2, 910-919.
18. Kubelka, J. Time-Resolved Methods in Biophysics. 9. Laser Temperature-Jump Methods for Investigating Biomolecular Dynamics. Photochem. Photobiol. Sci. 2009, 8, 499-512.
19. Chiu, M.-J.; Chu, L.-K. Quantifying the Photothermal Efficiency of Gold Nanoparticles Using Tryptophan as an in Situ Fluorescent Thermometer. Phys. Chem. Chem. Phys. 2015, 17, 17090-17100.
20. Chen, K.-J.; Lin, C.-T.; Tseng, K.-C.; Chu, L.-K. Using SiO2-Coated Gold Nanorods as Temperature Jump Photothermal Convertors Coupled with a Confocal Fluorescent Thermometer to Study Protein Unfolding Kinetics: A Case of Bovine Serum Albumin. J. Phys. Chem. C 2017, 121, 14981-14989.
21. Tseng, K.-C.; Chu, L.-K. Extracting the Protein Dynamics of Bovine Serum Albumin in the Native Condition Using Confocal Fluorescent Temperature Jump. J. Appl. Phys. 2019, 125, 084701.
第三章 樣品製備與實驗步驟
1. Edelhoch, H. Spectroscopic Determination of Tryptophan and Tyrosine in Proteins. Biochemistry 1967, 6, 1948-1954.
2. Pace, C. N.; Vajdos, F.; Fee, L.; Grimsley, G.; Gray, T. How to Measure and Predict the Molar Absorption Coefficient of a Protein. Protein Sci. 1995, 4, 2411-2423.
第四章 實驗結果與討論
1. Edelhoch, H. Spectroscopic Determination of Tryptophan and Tyrosine in Proteins. Biochemistry 1967, 6, 1948-1954.
2. Pace, C. N.; Vajdos, F.; Fee, L.; Grimsley, G.; Gray, T. How to Measure and Predict the Molar Absorption Coefficient of a Protein. Protein Sci. 1995, 4, 2411-2423.
3. Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed., Springer: Baltimore, Maryland, USA, 2006, pp. 529-575.
4. Wang, Q.; Huang, C. R.; Jiang, M.; Zhu, Y. Y.; Wang, J.; Chen, J.; Shi, J. H. Binding Interaction of Atorvastatin with Bovine Serum Albumin: Spectroscopic Methods and Molecular Docking. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 156, 155-163.
5. Xu, H.; Yao, N.; Xu, H.; Wang, T.; Li, G.; Li, Z. Characterization of the Interaction Between Eupatorin and Bovine Serum Albumin by Spectroscopic and Molecular Modeling Methods. Int. J. Mol. Sci. 2013, 14, 14185-14203.
6. Whitmore, L.; Wallace, B. A. Protein Secondary Structure Analyses from Circular Dichroism Spectroscopy: Methods and Reference Databases. Biopolymers 2008, 89, 392-400.
7. Majorek, K. A.; Porebski, P. J.; Dayal, A.; Zimmerman, M. D.; Jablonska, K.; Stewart, A. J.; Chruszcz, M.; Minor, W. Structural and Immunologic Characterization of Bovine, Horse, and Rabbit Serum Albumins. Mol. Immunol. 2012, 52, 174-182.
8. Moriyama, Y.; Ohta, D.; Hachiya K.; Mitsui, Y.; Takeda, K. Behavior of Tryptophan Residues of Bovine and Human Serum Albumins in Ionic Surfactant Solutions: A Comparative Study of the Two and One Tryptophan(s) of Bovine and Human Albumins. J. Protein Chem. 1996, 15, 265-272.
9. Dragan, A. I.; Geddes, C. D. Indium Nanodeposits: A Substrate for Metal-Enhanced Fluorescence in the Ultraviolet Spectral Region. J. Appl. Phys. 2010, 108, 094701.
10. Vivian, J. T.; Callis, P. R. Mechanisms of Tryptophan Fluorescence Shifts in Proteins. Biophys. J. 2001, 80, 2093-2109.
11. Yang, H.; Xiao, X.; Zhao, X.; Wu, Y. Intrinsic Fluorescence Spectra of Tryptophan, Tyrosine and Phenylalanine. 5th International Conference on Advanced Design and Manufacturing Engineering. Atlantis Press, 2015, pp. 224-233.
12. White, A. Effect of pH on Fluorescence of Tyrosine, Tryptophan and Related Compounds. Biochem. J. 1959, 71, 217-220.
13. Gally, J. A.; Edelman, G. M. The Effect of Temperature on the Fluorescence of Some Aromatic Amino Acids and Proteins. Biochim. Biophys. Acta 1962, 60, 499-509.
14. Chiu, M.-J.; Chu, L.-K. Quantifying the Photothermal Efficiency of Gold Nanoparticles Using Tryptophan as an in Situ Fluorescent Thermometer. Phys. Chem. Chem. Phys. 2015, 17, 17090-17100.
15. Takeda, K.; Shigeta, M.; Aoki, K. Secondary Structures of Bovine Serum Albumin in Anionic and Cationic Surfactant Solutions. J. Colloid Interface Sci. 1987, 117, 120-126.
16. Greenfield, N. J. Using Circular Dichroism Spectra to Estimate Protein Secondary Structure. Nat. Protoc. 2006, 1, 2876-2890.
17. Takeda, K.; Wada, A.; Yamamoto, K.; Moriyama, Y.; Aoki, K. Conformational Change of Bovine Serum Albumin by Heat Treatment. J. Protein Chem. 1989, 8, 653-659.
18. Chen, K.-J.; Lin, C.-T.; Tseng, K.-C.; Chu, L.-K. Using SiO2‑Coated Gold Nanorods as Temperature Jump Photothermal Convertors Coupled with a Confocal Fluorescent Thermometer to Study Protein Unfolding Kinetics: A Case of Bovine Serum Albumin. J. Phys. Chem. C 2017, 121, 14981-14989.
19. Reshetnyak, Y. K.; Koshevnik, Y.; Burstein, E. A. Decomposition of Protein Tryptophan Fluorescence Spectra into Log-Normal Components. III. Correlation between Fluorescence and Microenvironment Parameters of Individual Tryptophan Residues. Biophys. J. 2001, 81, 1735-1758.
20. Ursache, F. M.; Aprodu, I.; Nistor, O. V.; Bratu, M.; Botez, E.; Stănciuc, N. Probing the Heat‐Induced Structural Changes in Bovine Serum Albumin by Fluorescence Spectroscopy and Molecular Modelling. Int. J. Dairy Technol. 2017, 70, 424-431.
21. Moreno, M. J.; Prieto, M. Interaction of the Peptide Hormone Adrenocorticotropin, ACTH(1-24), With a Membrane Model System: A Fluorescence Study. Photochem. Photobiol. 1993, 57, 431-437.
22. Tseng, K.-C.; Chu, L.-K. Extracting the Protein Dynamics of Bovine Serum Albumin in the Native Condition Using Confocal Fluorescent Temperature Jump. J. Appl. Phys. 2019, 125, 084701.
23. Zhdanova, N. G.; Shirshin, E. A.; Maksimov, E. G.; Panchishin, I. M.; Saletsky, A. M.; Fadeev, V. V. Tyrosine Fluorescence Probing of the Surfactant-Induced Conformational Changes of Albumin. Photochem. Photobiol. Sci. 2015, 14, 897-908.
24. Khodadadi, S.; Sokolov, A. P. Protein Dynamics: From Rattling in a Cage to Structural Relaxation. Soft Matter, 2015, 11, 4984-4998.