簡易檢索 / 詳目顯示

研究生: 黃俊瑋
Huang, Chen-Wei
論文名稱: 含溴鉛鹵鈣鈦礦材料之製備與特性
Preparation and Properties of Bromine Containing Lead-Halide Perovskite Materials
指導教授: 洪勝富
Horng, Sheng-Fu
口試委員: 孟心飛
Meng, Hsin-Fei
張志宇
Chang, Chih-Yu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 70
中文關鍵詞: 鈣鈦礦太陽電池一步法溶液製程
外文關鍵詞: perovskite, solar-cell, one-step
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以 PEDOT:PSS(AI-4083)作為電洞傳輸層,此實驗的元件結構為
    ITO/PEDOT:PSS_AI4083/Perovskite/PCBM(C60)/Al是標準P-I-N結構一步法製作的有機-無機鈣鈦礦太陽能電池。本實驗將從目前較成熟的鉛鹵鈣鈦礦材料CH3NH3PbI3 著手,透過置換鹵素元素研究新材料電子結構、載子傳播及光性與穩定性。再經由調整退火時間長短及退火溫度高低,比較不同條件之下新材料的表面型態。金屬鹵化物鈣鈦礦材料因為具有遠高於非晶矽的載子移動率、激子擴散長度,更可以透過摻雜或置換元素進而調整能隙,應用的波長範圍從可見光到UV且可以再製做成異質接面,因此有極大的潛能。此外,本實驗全程都是採取低溫溶劑製程成長在基板上,這在未來有機會可運用roll-to-roll印製製程進而降低成本。


    Our standard device configuration is Glass/ITO/PEDOT:PSS_AI4083/Perovskite/PCBM(C60)/Al/.We will start from the matured lead iodide CH3NH3PbI3 and obtain derivatives by substituting elements.We will learn electronic structure, carrirer transport, diffusion length and stability of this new material, we will also the surface of this new structure by adjusting annealing temperature and annealing time.

    第一章 序論 11 1.1研究背景 11 1.1.1 前言 11 1.1.2 太陽能電池的發展 11 1.1.3 有機太陽電池的發展 12 1.1.4 鉛鹵鈣鈦礦太陽電池的發展 15 1.2研究動機 16 1.3論文架構 16 第二章 實驗原理 18 2.1太陽能電池基本介紹 18 2.1.1太陽能電池操作理論 18 2.1.2理想的太陽能電池 19 2.1.3實際太陽電池之等效模型: 21 2.1.4太陽電池基本參數 23 2.1.5太陽能電池操作分析 26 2.2太陽能電池材料物理特性 29 2.2.1主動層吸光材料 29 2.2.2電子、電洞傳輸層材料 31 2.2.3選用的正極與負極材料 32 2.4鈣鈦礦太陽能電池結構 32 第三章 實驗方法與流程 34 3.1鈣鈦礦太陽電池製作流程 34 3.2 ITO玻璃基板設計與圖案化 35 3.2.1 ITO玻璃基板 35 3.2.2乾式光阻 35 3.2.3曝光 35 3.2.4顯影 36 3.2.5蝕刻 36 3.3清洗ITO基板 37 3.4電洞傳輸層成膜 37 3.5本質層成膜 38 3.5.1(PbBr2) 38 3.5.2(MABr) 39 3.6電子傳輸層成膜 40 3.7金屬負電極 41 3.8封裝 42 3.9量測 43 第四章 實驗結果與探討 45 4.1不同主動層材料比較 45 4.1.1 PbCl2 vs PbBr2 45 4.1.2 PbBr2+MAI v.s. MABr+PbI2 46 4.2主動層PbBr2與MAI濃度對鈣鈦礦太陽電池的影響 56 4.3主動層退火時間與溫度對太陽電池的影響 57 4.3.1 探討鈣鈦礦層退火時間對元件的影響。 57 4.3.2鈣鈦礦層退火溫度對元件的影響 58 4.4 CF(Chloroform)轉速對元件的影響 60 4.5 電壓掃描速率對元件的電性影響 63 4.6掃描方向對量測元件的電性影響 66 第五章總結與未來展望 67

    1.Chapin, D.M., C.S. Fuller, and G.L. Pearson, A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics, 1954. 25(5): p. 676-677.
    2. Zhao, J., et al., 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Applied Physics Letters, 1998. 73(14): p. 1991-1993.
    3. Schultz, O., S.W. Glunz, and G.P. Willeke, SHORT COMMUNICATION: ACCELERATED PUBLICATION: Multicrystalline silicon solar cells exceeding 20% efficiency. Progress in Photovoltaics: Research and Applications, 2004. 12(7): p. 553-558.
    4. Benagli, S., et al., High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&D reactor, in 24th European Photovoltaic Solar Energy Conference. 2009: Hamburg.
    5. Coakley, et al., Conjugated Polymer Photovoltaic Cells. Chemistry of Materials, 2004. 16(23): p. 4533-4542.
    6. Hoppe, et al., Organic solar cells: An overview. Journal of Materials Research, 2004. 19(07): p. 1924-1945.
    7. Chaoyang Kuang†§, Gang Tang†§, Tonggang Jiu*†, Hui Yang‡, Huibiao Liu‡, Bairu Li†, Weining Luo†, Xiaodong Li†, Wenjun Zhang†, Fushen Lu§, Junfeng Fang*†, and Yuliang Li*‡ , “Highly Efficient Electron Transport Obtained by Doping PCBM with Graphdiyne in Planar-Heterojunction Perovskite Solar Cells”, Nano Lett., 2015, 15 (4), pp 2756–2762
    8. Jingjing Chang,ab Hai Zhu,c Bichen Li,a Furkan Halis Isikgor,a Yue Hao,b Qinghua Xu*c and Jianyong Ouyang*a , “Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials”, J. Mater. Chem. A, 2016,4, 887-893
    9. Jangwon Seo,a Sangman Park,a Young Chan Kim,a Nam Joong Jeon,a Jun Hong Noh,a Sung Cheol Yoon*a and Sang Il Seok*ab , “Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells”,Energy Environ.Sci, 2014,7, 2642-2646
    10. Huanping Zhou1,2 Qi Chen1,2*Yongsheng Liu1,2,Yang Yang1, “Interface engineering of highly efficient perovskite solar cells2”, Science , 2014.Vol. 345, Issue 6196, pp. 542-546
    11. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. advance online publication.
    12. Sumanshu Agarwal1 and Pradeep R. Nair2, “Performance Optimization for Perovskite Based Solar Cells”,IEEE,2014,1515 – 1518
    13. Yani Chen,† Yixin Zhao,‡ and Ziqi Liang*,†“Non-Thermal Annealing Fabrication of Efficient Planar Perovskite Solar Cells with Inclusion of NH4Cl”, Chem. Mater., 2015, 27 (5), pp 1448–1451,
    14. Sumanshu Agarwal1 and Pradeep R. Nair2, “Performance Optimization for Perovskite Based Solar Cells”,IEEE,2014,1515 – 1518
    15. Gurudayal†, Dharani Sabba‡, Mulmudi Hemant Kumar‡, Lydia Helena Wong†, James Barber†§, Michael Grätzel∥, and Nripan Mathews*†,“Perovskite–Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting”, Nano Lett., 2015, 15 (6), pp 3833–3839
    16. Chen, Q., et al., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society, 2014. 136(2): p. 622-625.
    17. Lany, S. and A. Zunger, Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors. Physical Review B, 2005. 72(3): p. 035215.
    18. Janotti, A. and C.G. Van de Walle, Oxygen vacancies in ZnO. Applied Physics Letters, 2005. 87(12): p. 122102.
    19. Boopathi, K.M., et al., Preparation of metal halide perovskite solar cells through a liquid droplet assisted method. Journal of Materials Chemistry A, 2015. 3(17): p. 9257-9263.
    20. Barrows, A.T., et al., Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science, 2014. 7(9): p. 2944-2950.
    21. Ji, K.H., et al., Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors. Applied Physics Letters, 2011. 98(10): p. 103509.
    22. Roldan-Carmona, C., et al., Flexible high efficiency perovskite solar cells. Energy & Environmental Science, 2014. 7(3): p. 994-997.
    23. You, J., et al., Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano, 2014. 8(2): p. 1674-1680.
    24. Wang, Y.R. and C.B. Duke, Surface reconstructions of ZnO cleavage faces. Surface Science, 1987. 192(2–3): p. 309-322.
    25. Kurdesau, F., et al., Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature. Journal of Non-Crystalline Solids, 2006. 352(9–20): p. 1466-1470.
    26. Brabec, C.J., et al., The influence of materials work function on the open circuit voltage of plastic solar cells. Thin Solid Films, 2002. 403–404(0): p. 368-372.
    27. Chang, Y.-F., et al., Interface and thickness tuning for blade coated small-molecule organic light-emitting diodes with high power efficiency. Journal of Applied Physics, 2013. 114(12): p. 123101.
    28. Chen, E.-C., et al., Multilayer rapid-drying blade coating for organic solar cells by low boiling point solvents. Japanese Journal of Applied Physics, 2014. 53(6): p. 062301.
    29. Tsai, P.-T., et al., High-efficiency polymer solar cells by blade coating in chlorine-free solvents. Organic Electronics, 2014. 15(4): p. 893-903.
    30. Shrotriya, V., et al., Effect of self-organization in polymer/fullerene bulk heterojunctions on solar cell performance. Applied Physics Letters, 2006. 89(6): p. 063505.
    31. CONDUCTIVE POLYMERS DIVISION CleviosTM P VP AI 4083
    (http;//goo.gl/IyAeUE).
    32. Q.Chen,H.Zhou,Z.Hong,S.Luo,H.S.Duan,“Planar Heterojunction Perovskite Solar Cell via Vapor-Assisted SolutionProcess,”J.Am.Chem.Soc.,136,622-625(2014)
    33. P.P. Boix ,K.Nonomura,N.Mathews and S.G.Mhaisalkar, “Current progress and future perspectives for organicinorganic perovskite solar cells, ”Master.Today,17,16-23(2014)
    34. Product Specification[6,6]-Phenyl C61 butyric acid methyl
    Ester >99% (http://goo.gl/O5bLYy).
    35. Im, J.-H., et al., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011. 3(10): p. 4088-4093.
    36. Lee, M.M., et al., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 2012. 338(6107): p. 643-647.
    37. Burschka, J., et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499(7458): p. 316-319.
    38. Mulmudi Hemant Kumar, Sabba Dharani, Wei Lin Leong, Pablo P. Boix, Rajiv Ramanujam Prabhakar,Tom Baikie, Chen Shi, Hong Ding, Ramamoorthy Ramesh, Mark Asta, Michael Graetzel, Subodh G.Mhaisalkar and Nripan Mathews, Adv. Mater. DOI: 10.1002/adma.201401991 (2014)
    39. K. Tanaka T. Takahashi, T. Ban, T.Kondo,K.Uchida and N. Miura, “Comparative study on the excitons in lead-halide based perovskite-type crystalsCH3NH3PbI3, ”Solid State Communi.,127,619-623(2003)
    40. Sneha A. Kulkarni, Tom Baikie, Pablo P. Boix, Natalia Yantara, Nripan Mathews and Subodh Mhaisalkar, Journal of Materials Chemistry A 2014, 2 , 9221–9225
    41. M.Liu,M.B.Johnston and H.J.Snaith, Nature 501(7467):395–398 (2013)

    QR CODE