研究生: |
黃俊瑋 Huang, Chen-Wei |
---|---|
論文名稱: |
含溴鉛鹵鈣鈦礦材料之製備與特性 Preparation and Properties of Bromine Containing Lead-Halide Perovskite Materials |
指導教授: |
洪勝富
Horng, Sheng-Fu |
口試委員: |
孟心飛
Meng, Hsin-Fei 張志宇 Chang, Chih-Yu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 鈣鈦礦太陽電池 、一步法 、溶液製程 |
外文關鍵詞: | perovskite, solar-cell, one-step |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以 PEDOT:PSS(AI-4083)作為電洞傳輸層,此實驗的元件結構為
ITO/PEDOT:PSS_AI4083/Perovskite/PCBM(C60)/Al是標準P-I-N結構一步法製作的有機-無機鈣鈦礦太陽能電池。本實驗將從目前較成熟的鉛鹵鈣鈦礦材料CH3NH3PbI3 著手,透過置換鹵素元素研究新材料電子結構、載子傳播及光性與穩定性。再經由調整退火時間長短及退火溫度高低,比較不同條件之下新材料的表面型態。金屬鹵化物鈣鈦礦材料因為具有遠高於非晶矽的載子移動率、激子擴散長度,更可以透過摻雜或置換元素進而調整能隙,應用的波長範圍從可見光到UV且可以再製做成異質接面,因此有極大的潛能。此外,本實驗全程都是採取低溫溶劑製程成長在基板上,這在未來有機會可運用roll-to-roll印製製程進而降低成本。
Our standard device configuration is Glass/ITO/PEDOT:PSS_AI4083/Perovskite/PCBM(C60)/Al/.We will start from the matured lead iodide CH3NH3PbI3 and obtain derivatives by substituting elements.We will learn electronic structure, carrirer transport, diffusion length and stability of this new material, we will also the surface of this new structure by adjusting annealing temperature and annealing time.
1.Chapin, D.M., C.S. Fuller, and G.L. Pearson, A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics, 1954. 25(5): p. 676-677.
2. Zhao, J., et al., 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Applied Physics Letters, 1998. 73(14): p. 1991-1993.
3. Schultz, O., S.W. Glunz, and G.P. Willeke, SHORT COMMUNICATION: ACCELERATED PUBLICATION: Multicrystalline silicon solar cells exceeding 20% efficiency. Progress in Photovoltaics: Research and Applications, 2004. 12(7): p. 553-558.
4. Benagli, S., et al., High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&D reactor, in 24th European Photovoltaic Solar Energy Conference. 2009: Hamburg.
5. Coakley, et al., Conjugated Polymer Photovoltaic Cells. Chemistry of Materials, 2004. 16(23): p. 4533-4542.
6. Hoppe, et al., Organic solar cells: An overview. Journal of Materials Research, 2004. 19(07): p. 1924-1945.
7. Chaoyang Kuang†§, Gang Tang†§, Tonggang Jiu*†, Hui Yang‡, Huibiao Liu‡, Bairu Li†, Weining Luo†, Xiaodong Li†, Wenjun Zhang†, Fushen Lu§, Junfeng Fang*†, and Yuliang Li*‡ , “Highly Efficient Electron Transport Obtained by Doping PCBM with Graphdiyne in Planar-Heterojunction Perovskite Solar Cells”, Nano Lett., 2015, 15 (4), pp 2756–2762
8. Jingjing Chang,ab Hai Zhu,c Bichen Li,a Furkan Halis Isikgor,a Yue Hao,b Qinghua Xu*c and Jianyong Ouyang*a , “Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials”, J. Mater. Chem. A, 2016,4, 887-893
9. Jangwon Seo,a Sangman Park,a Young Chan Kim,a Nam Joong Jeon,a Jun Hong Noh,a Sung Cheol Yoon*a and Sang Il Seok*ab , “Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells”,Energy Environ.Sci, 2014,7, 2642-2646
10. Huanping Zhou1,2 Qi Chen1,2*Yongsheng Liu1,2,Yang Yang1, “Interface engineering of highly efficient perovskite solar cells2”, Science , 2014.Vol. 345, Issue 6196, pp. 542-546
11. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. advance online publication.
12. Sumanshu Agarwal1 and Pradeep R. Nair2, “Performance Optimization for Perovskite Based Solar Cells”,IEEE,2014,1515 – 1518
13. Yani Chen,† Yixin Zhao,‡ and Ziqi Liang*,†“Non-Thermal Annealing Fabrication of Efficient Planar Perovskite Solar Cells with Inclusion of NH4Cl”, Chem. Mater., 2015, 27 (5), pp 1448–1451,
14. Sumanshu Agarwal1 and Pradeep R. Nair2, “Performance Optimization for Perovskite Based Solar Cells”,IEEE,2014,1515 – 1518
15. Gurudayal†, Dharani Sabba‡, Mulmudi Hemant Kumar‡, Lydia Helena Wong†, James Barber†§, Michael Grätzel∥, and Nripan Mathews*†,“Perovskite–Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting”, Nano Lett., 2015, 15 (6), pp 3833–3839
16. Chen, Q., et al., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society, 2014. 136(2): p. 622-625.
17. Lany, S. and A. Zunger, Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors. Physical Review B, 2005. 72(3): p. 035215.
18. Janotti, A. and C.G. Van de Walle, Oxygen vacancies in ZnO. Applied Physics Letters, 2005. 87(12): p. 122102.
19. Boopathi, K.M., et al., Preparation of metal halide perovskite solar cells through a liquid droplet assisted method. Journal of Materials Chemistry A, 2015. 3(17): p. 9257-9263.
20. Barrows, A.T., et al., Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science, 2014. 7(9): p. 2944-2950.
21. Ji, K.H., et al., Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors. Applied Physics Letters, 2011. 98(10): p. 103509.
22. Roldan-Carmona, C., et al., Flexible high efficiency perovskite solar cells. Energy & Environmental Science, 2014. 7(3): p. 994-997.
23. You, J., et al., Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano, 2014. 8(2): p. 1674-1680.
24. Wang, Y.R. and C.B. Duke, Surface reconstructions of ZnO cleavage faces. Surface Science, 1987. 192(2–3): p. 309-322.
25. Kurdesau, F., et al., Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature. Journal of Non-Crystalline Solids, 2006. 352(9–20): p. 1466-1470.
26. Brabec, C.J., et al., The influence of materials work function on the open circuit voltage of plastic solar cells. Thin Solid Films, 2002. 403–404(0): p. 368-372.
27. Chang, Y.-F., et al., Interface and thickness tuning for blade coated small-molecule organic light-emitting diodes with high power efficiency. Journal of Applied Physics, 2013. 114(12): p. 123101.
28. Chen, E.-C., et al., Multilayer rapid-drying blade coating for organic solar cells by low boiling point solvents. Japanese Journal of Applied Physics, 2014. 53(6): p. 062301.
29. Tsai, P.-T., et al., High-efficiency polymer solar cells by blade coating in chlorine-free solvents. Organic Electronics, 2014. 15(4): p. 893-903.
30. Shrotriya, V., et al., Effect of self-organization in polymer/fullerene bulk heterojunctions on solar cell performance. Applied Physics Letters, 2006. 89(6): p. 063505.
31. CONDUCTIVE POLYMERS DIVISION CleviosTM P VP AI 4083
(http;//goo.gl/IyAeUE).
32. Q.Chen,H.Zhou,Z.Hong,S.Luo,H.S.Duan,“Planar Heterojunction Perovskite Solar Cell via Vapor-Assisted SolutionProcess,”J.Am.Chem.Soc.,136,622-625(2014)
33. P.P. Boix ,K.Nonomura,N.Mathews and S.G.Mhaisalkar, “Current progress and future perspectives for organicinorganic perovskite solar cells, ”Master.Today,17,16-23(2014)
34. Product Specification[6,6]-Phenyl C61 butyric acid methyl
Ester >99% (http://goo.gl/O5bLYy).
35. Im, J.-H., et al., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011. 3(10): p. 4088-4093.
36. Lee, M.M., et al., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 2012. 338(6107): p. 643-647.
37. Burschka, J., et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499(7458): p. 316-319.
38. Mulmudi Hemant Kumar, Sabba Dharani, Wei Lin Leong, Pablo P. Boix, Rajiv Ramanujam Prabhakar,Tom Baikie, Chen Shi, Hong Ding, Ramamoorthy Ramesh, Mark Asta, Michael Graetzel, Subodh G.Mhaisalkar and Nripan Mathews, Adv. Mater. DOI: 10.1002/adma.201401991 (2014)
39. K. Tanaka T. Takahashi, T. Ban, T.Kondo,K.Uchida and N. Miura, “Comparative study on the excitons in lead-halide based perovskite-type crystalsCH3NH3PbI3, ”Solid State Communi.,127,619-623(2003)
40. Sneha A. Kulkarni, Tom Baikie, Pablo P. Boix, Natalia Yantara, Nripan Mathews and Subodh Mhaisalkar, Journal of Materials Chemistry A 2014, 2 , 9221–9225
41. M.Liu,M.B.Johnston and H.J.Snaith, Nature 501(7467):395–398 (2013)