簡易檢索 / 詳目顯示

研究生: 張景皓
Chang, Ching Hao
論文名稱: Nanomagnetism with geometric effects
幾何效應下的奈米磁學
指導教授: 洪在明
Hong, Tzay-Ming
口試委員: 張慶瑞
Chang, Ching-Ray
林敏聰
Lin, Minn-Tsong
魏金明
Wei, Ching-Ming
齊正中
Chi, Cheng-Chung
賴志煌
Lai, Chih-Huang
洪在明
Hong, Tzay-Ming
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 71
中文關鍵詞: 磁性交互作用RKKY 交互作用RKKY耦合巨磁阻磁性半導體自旋電子學粗糙度磁性薄膜
外文關鍵詞: interlayer exchange interaction, RKKY interaction, RKKY coupling, GMR, DMS, diluted magnetic semiconductors, spintronic, roughness, magnetic thin layer
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In giant- and tunneling-magnetoresistance (FMR and TMR)systems, two ferromagnetic layers are coupled through a nonmagnetic spacer. In spite of the numerous theoretic
    studies (and the award of a Nobel Prize), quantitative predictions on the strength of the interlayer exchange coupling (IEC) is still missing, largely due to the difficulties at handling the interlayer roughness. This deficiency becomes more urgent in recent years with the advance of technique in ion beam bombardment which enables tailoring of specific topography down to the nanoscale.
    This thesis is devoted to clarifying the role of interface roughness in multilayer systems. As opposed to a disturbing potential energy, the deviation from a smooth profile becomes the subject of our perturbation theory. Rather than the detrimental role predicted by common mean-field theory, we find the interface roughness can in fact enhance the IEC via resonance states when its major Fourier conjugate satisfies certain conditions. In the case of GMR, these conditions involve matching with the Fermi momentum of the metallic spacer. Although there is no intrinsic momentum scale in TMR, the case is reminiscent of the famous Casimir effect in the optical system where the handling of interface roughness is also a pressing question. We elaborate on the similarities and how lessons can be borrowed between these two systems. Finally, we report another calculation of ours that shows the strength of IEC to oscillate with the width of ferromagnetic layers. Base on our predictions, our German collaborators will be able to achieve the stunt of enhancing the IEC by two folds and at another width nearly turning it off.


    Abstract i 致謝 iii List of Publication vii 1 Introduction to interlayer exchange coupling (IEC) 1 1.1 Brief history . . .1 1.2 Physical mechanism . . .2 1.2.1 Cohesive energy . . .3 1.2.2 Asymptotic form . . .4 1.3 Measurement . . .5 1.4 Interface roughness . . .7 1.4.1 N′eel coupling . . . 8 1.4.2 Biquadratic coupling . . .9 1.5 Bubble diagrams for thesis organization . . .10 2 IEC with geometric effects 13 2.1 Theoritical challenges . . . 13 2.2 Perturbation theory for interface roughness . . .14 2.2.1 Response function . . .16 2.2.2 Mild roughness . . .17 2.3 Correlated Interfaces . . .18 2.3.1 TMR . . .19 2.3.2 GMR . . .19 2.4 Enhancement of IEC . . . 22 2.5 Enhancement of magnetic IEC by roughness for wide spacers . . .24 2.5.1 Uncorrelated interfaces . . . 25 2.5.2 Correlated interfaces . . .26 2.5.3 Conclusions and discussions . . .27 2.6 Analogy and comparison with the Casimir effect . . .29 2.6.1 Radiation force in one dimension . . .30 2.6.2 Radiation force in three dimensions . . .31 3 IEC in nanosized trilayers 35 3.1 IEC with a capping layer . . . 35 3.2 Numerical results . . . 36 3.3 Rippled substrate . . . 42 3.3.1 Perturbation theory . . . 42 3.3.2 IEC . . .45 4 Diluted magnetic clusters in semiconductors 47 4.1 Theoretical approach . . . 48 4.2 Spin-glass behavior . . .49 5 RKKY oscillations and the Heat exchange in cold atoms 53 5.1 Introduction . . .53 5.2 Harmonic trap . . .54 5.2.1 Energy and position-momentum correlation . . .54 5.2.2 Coupling between quantum friction and quantum breathing . 57 5.3 Infinite well . . .59 5.4 Discussions and conclusions . . .62 5.5 Harmonic oscillator with a constant adiabatic parameter . 63 5.6 Adiabatic and sudden limits . . .64 Bibliography 67

    [1] C. F. Majkrzak, J. W. Cable, J. Kwo, M. Hong, D. B. McWhan, Y. Yafet, J. V.
    Waszczak, and C. Vettier, Phys. Rev. Lett. 56, 2700 (1986).
    [2] P. Gr‥unberg, R. Schreiber, Y. Pang, M. B. Brodsky, and H. Sowers, Phys. Rev.
    Lett. 57, 2442 (1986).
    [3] S. S. P. Parkin, N. More and K. P. Roche, Phys. Rev. Lett. 64, 2304 (1990).
    [4] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne,
    G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
    [5] G. Binasch, P. Gr‥unberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828
    (1989).
    [6] J. C. Slonczewski, Phys. Rev. Lett. 67, 3172 (1991).
    [7] D. C. Ralph, and M. D. Stiles, J. Magn. Magn. Mater. 320, 1190 (2008).
    [8] A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954); T. Kasuya, Prog. Theor.
    Phys. 16, 45 (1956); K. Yosida, Phys. Rev. 106, 893 (1957).
    [9] Y. Yafet, Phys. Rev. B 36, 3948 (1987) discussed one-dimensional systems; for 2-D
    systems, see B. Fisher and M. Klein, ibid. 11, 2025 (1975); while D. N. Aristov,
    ibid. 55, 8064 (1997) covered all possible dimensions.
    [10] F. Herman, J. Sticht, and M. Van Schilfgaarde, J. Appl. Phys. 69, 4783 (1991);
    K. Ounadjela, C. B. Sommers, A. Fert, D. Stoeffler, F. Gautier, and V. L. Moruzzi,
    Europhys. Lett. 15, 875 (1991).
    [11] H. Hasegawa, Phys. Rev. B 42, 2368 (1990); H. Hasegawa, Phys. Rev. B 43, 10803
    (1991).
    [12] P. Bruno and C. Chappert, Phys. Rev. Lett. 67, 1602 (1991).
    [13] M. D. Stiles, Phys. Rev. B 48, 7238 (1993); Phys. Rev. B 54, 14679 (1996).
    [14] P. Bruno, Phys. Rev. B 52, 411 (1995).
    [15] M. D. Stiles, J. Magn. Magn. Mater. 200, 322 (1999).
    [16] C. H. Chang and T. M. Hong, Phys. Rev. B 82, 094415 (2010).
    [17] J. Opitz, P. Zahn, J. Binder, and I. Mertig, Phys. Rev. B 63, 094418 (2001).
    [18] From http://www.focus-gmbh.com/page2/page48/page9/page32/page32.html.
    [19] Ultrathin Magnetic Structures II, edited by B. Heinrich and J. A. C. Bland
    (Springer-Verlag, Berlin, 1994).
    [20] J. Fassbender, T. Strache, M. O. Liedke, D. Mark′o, S. Wintz, K. Lenz, A. Keller,
    S. Facsko, I. M _ch, and J. McCord, New J. Phys. 11, 125002 (2009).
    [21] M. K‥orner, K. Lenz, M. O. Liedke, T. Strache, A. M _ klich, A. Keller, S. Facsko,
    and J. Fassbender, Phys. Rev. B 80, 214401 (2009).
    [22] S. O. Demokritov, C. Bayer, S. Poppe, M. Rickart, J. Fassbender, B. Hillebrands,
    D. I. Kholin, N. M. Kreines and O. M. Liedke, Phys. Rev. Lett. 90, 097201 (2003).
    [23] C. H. Chang and T. M. Hong, Phys. Rev. B 79, 054415 (2009).
    [24] D. Halley, O. Bengone, S. Boukari, and W. Weber, Phys. Rev. Lett. 102, 027201
    (2009).
    [25] J. Kudrnovsk′y, V. Drchal, I. Turek, M. Sob, and P. Weinberger, Phys. Rev. B. 53,
    5125 (1996).
    [26] J. Unguris, R. J. Celotta, and D. T. Pierce, Phys. Rev. Lett. 79, 2734 (1997).
    [27] H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948).
    [28] F. Chen, U. Mohideen, G. L. Klimchitskaya, and V. M. Mostepanenko, Phys. Rev.
    Lett. 88, 101801 (2002); Phys. Rev. A 66, 032113 (2002).
    [29] E. V. Blagov, G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Phys.
    Rev. A 69, 044103 (2004).
    [30] C. Genet, A. Lambrecht, P. A. Maia Neto, and S. Reynaud, Europhys. Lett. 62,
    484 (2003).
    [31] P. A. Maia Neto, A. Lambrecht, and S. Reynaud, Euro. Phys. Lett. 69, 924 (2005).
    [32] P. A. Maia Neto, A. Lambrecht, and S. Reynaud, Phys. Rev. A 72, 012115(2005).
    [33] R. B. Rodrigues, P. A. Maia Neto, A. Lambrecht, and S. Reynaud, Phys. Rev.
    Lett. 96, 100402(2006).
    34] P. J. van Zwol, G. Palasantzas, M. van de Schootbrugge, and J. Th. M. De Hosson,
    Appl. Phys. Lett. 92, 054101 (2008).
    [35] P. J. van Zwol, G. Palasantzas, and J. Th. M. De Hosson, Phys. Rev. B 77, 075412
    (2008).
    [36] H.-C. Chiu, G. L. Klimchitskaya, V. N. Marachevsky, V. M. Mostepanenko, and
    U. Mohideen, Phys. Rev. B 80, 121402(R) (2009).
    [37] H.-C. Chiu, G. L. Klimchitskaya, V. N. Marachevsky, V. M. Mostepanenko, and
    U. Mohideen, Phys. Rev. B 81, 115417 (2010).
    [38] A. Lambrecht, P. A. Maia Neto, and S. Reynaud, New J. Phys. 8, 243 (2006).
    [39] C. Genet, A. Lambrecht, and S. Reynaud, Phys. Rev. A 67, 043811(2003).
    [40] P. M. Levy, S. Maekawa, and P. Bruno, Phys. Rev. B 58, 5588 (1998).
    [41] S. Bera, B. Satpati, D. K. Goswami, K. Bhattacharjee, P. V. Satyam, and B. N.
    Dev, J. Appl. Phys. 99, 074301 (2006).
    [42] E. Holmstr‥om, A. Bergman, L. Nordstr‥om, I. A. Abrikosov, S. B. Dugdale and B.
    L. Gy‥orffy, Phys. Rev. B 70, 064408 (2004).
    [43] P. Bruno, J. Kudrnovsky, V. Drchal, and I. Turek, J. Magn. Magn. Mater. 165,
    128 (1997); E. Holmstr‥om, L. Nordstr‥om, L. Bergqvist, B. Skubic, B. Hjorvarsson,
    I. A. Abrikosov, P. Svedlindh, and O. Eriksson, PNAS 101, 4742 (2004).
    [44] C. Eckart, Phys. Rev. 35, 1303 (1930); M. Razavy, Quantum Theory of Tunneling
    (World Scientific, River Edge, NJ, 2003), p.96.
    [45] J. E. Ortega and F. J. Himpsel, Phys. Rev. Lett. 69, 844 (1992).
    [46] Z. Q. Qiu and N. V. Smith, J. Phys.: Condens. Matter 14, 169 (2002).
    [47] M. Jamet, A. Barski, T. Devillers, V. Poydenot, R. Dujardin, P. Bayle-Guillemaud,
    J. Rothman, E. Bellet-Amalric, A. Marty, J. Cibert, R. Mattana, and S. Tatarenko,
    Nature Materials 5, 653 (2006).
    [48] C. H. Chang and T. M. Hong, Appl. Phys. Lett. 93, 212106 (2008).
    [49] F. J. Himpsel, J. E. Ortega, G. J. Mankey, and R. F. Willis, Adv. Phys. 47, 511
    (1998).
    [50] S. N. Okuno and K. Inomata, Phys. Rev. Lett. 72, 1553 (1994).
    [51] K. Inomata, S. N. Okuno, Y. Saito, and K. Yusu, J. Magn. Magn. Mater. 156, 219
    (1996).
    [52] A. Keller and S. Facsko, Phys. Rev. B 82,155444 (2010).
    [53] A. H. MacDonald, P. Schiffer and N. Samarth, Nature Materials 4, 195 (2005).
    [54] H. Ohno, H. Munekata, T. Penney, S. von Molnar, and L. L. Chang, Phys. Rev.
    Lett. 68, 2664 (1992); Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno,
    and D. D. Awschalom, Nature (London) 402, 790 (1999); T. Dietl, H. Ohmo, F.
    Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000); D. Chiba, M.
    Yamanouchi, F. Matsukura, and H. Ohno, Science 301, 943 (2003).
    [55] I. ˘Zuti′c, J. Fabian, S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004).
    [56] M. Moreno, A. Trampert, B. Jenichen, L. Daweritz, and K. H. Ploog, J. Appl.
    Phys. 92, 4672 (2002).
    [57] M. Yokoyama, H. Yamaguchi, T. Ogawa, and M. Tanaka, J. Appl. Phys. 97,
    10D317 (2005).
    [58] T. Dietl and H. Ohno, Mater. Today 9, 18 (2006).
    [59] J. A. De Toro, J. P. Andres, J. A. GonZ′alez, J. P. Goff, A. J. Barbero, and J. M.
    Riveiro, Phys. Rev. B 70, 224412 (2004).
    [60] G. M. Genkin and M. V. Sapozhnikov, Appl. Phys. Lett. 64, 794 (1994).
    [61] P. Vargas and D. Altbir, J. Magn. Magn. Mater. 167, 161 (1997).
    [62] Y. Qiang, R. F. Sabiryanov, S. S. Jaswal, Y. Liu, H. Haberland, and D. J. Sellmyer,
    Phys. Rev. B 66, 064404 (2002).
    [63] A. Lopez, F. J. Lazaro, M. Artigas, and A. Larrea, Phys. Rev. B 66, 174413 (2002).
    [64] J. Du, B. Zhang, R. K. Zheng, and X. X. Zhang, Phys. Rev. B 75, 014415 (2007).
    [65] J. De Boeck, R. Oesterholt, A. Van Esch, H. Bender, C. Bruynseraede, C. Van
    Hoof, and G. Borghs, Appl. Phys. Lett. 68, 2744 (1996).
    [66] W. Z. Wang, J. J. Deng, J. Lu, B. Q. Sun, and J. H. Zhao, Appl. Phys. Lett. 91,
    202503 (2007).
    [67] Y. Sun, M. B. Salamon, K. Garnier, and R. S. Averback, Phys. Rev. Lett. 91,
    167206 (2003).
    [68] A. G. Petukhov, Igor ˘Zuti′c, and Steven C. Erwin, Phys. Rev. Lett. 99, 257202
    (2007).
    [69] S. Sanvito, P. Ordej′on, and N. A. Hill, Phys. Rev. B 63 165206 (2001).
    [70] C. H. Chang and T. M. Hong, Chin. J. Phys. 47, 703 (2009).
    [71] R. Skomski, R. F. Sabiryanov, and S. S. Jaswal, J. Appl. Phys. 87, 5890 (2000).
    [72] Samples include FeMnTiO5 and Fe0.25Zn0.75F2. Theoretical models can be found
    in S. Sachdev, N. Read, and R. Oppermann, Phys. Rev. B 52, 10286 (1995); A.
    Sengupta and A. Georges, ibid. 52, 10295 (1995); N Kawashima and H Rieger,
    arXiv:cond-mat/0312432 (2003).
    [73] S. Zhou, A. Shalimov, K. Potzger, N. M. Jeutter, C. Baehtz, M. Helm, J. Fassbender,
    and H. Schmidt, Appl. Phys. Lett. 95, 192505 (2009).
    [74] A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski,
    D. E. Pritchard, and W. Ketterle, Science 301, 1513 (2003).
    [75] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, SIAM
    J. Comput. 37, 166 (2007).
    [76] A. T. Rezakhani, W.-J. Kuo, A. Hamma, D. A. Lidar, and P. Zanardi, Phys. Rev.
    Lett. 103, 080502 (2009).
    [77] A. K. Tuchman, W. Li, H. Chien, S. Dettmer, and M. A. Kasevich, New J. Phys.
    8, 311 (2006).
    [78] P. Salamon, K. H. Hoffmann, Y. Rezek, and R. Kosloff, Phys. Chem. Chem. Phys.
    11, 1027 (2009).
    [79] A. Polkovnikov and V. Gritsev, Nature Phys. 4, 477 (2008).
    [80] T. Feldmann and R. Kosloff, Phys. Rev. E 61, 4774 (2000).
    [81] R. Kosloff and T. Feldmann, Phys. Rev. E 65, 055102 (R) (2002).
    [82] Y. Rezek, P. Salamon, K. H. Hoffmann and R. Kosloff, Europhys. Lett. 85, 30008
    (2009).
    [83] M. A. Lohe, J. Phys. A 42, 035307 (2009).
    [84] A. Minguzzi and D. M. Gangardt, Phys. Rev. Lett. 94, 240404 (2005).
    [85] J. F. Schaff, X. Song, P. Vignolo, and G. Labeyrie, Phys. Rev. A 82, 033430 (2010).
    [86] Xi Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Gu′ery-Odelin, and J. G.
    Muga, Phys. Rev. Lett. 104, 063002 (2010).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE