簡易檢索 / 詳目顯示

研究生: 周子喻
Chou, Tsu-Yu
論文名稱: 熱活化延遲螢光與聚集誘導放光有機發光元件光物理特性之研究
Photophysical Properties of Thermally Activated Delay Fluorescence and Aggregation Induced Emission Organic Light Emitted Devices
指導教授: 林皓武
Lin, Hao-Wu
口試委員: 呂宥蓉
Lu, Yu-Jung
林子超
Lin, Tzu-Chau
周鶴修
Chou, Ho-Hsiu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 128
中文關鍵詞: 熱活化延遲螢光聚集誘導放光三重態-三重態淬熄有機發光二極體元件
外文關鍵詞: TADF, AIE, TTA, OLED
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究主題以熱活化延遲螢光的光物理特性分析和聚集誘導放光元件的製備為主,同時,我們針對光物理量測:變角度光致發光量測原理和瞬態電激發光延遲量測做深入的討論。
    首先,在本論文的序論中,我們簡述有機發光二極體的在顯示器以及照明上的應用。
    在論文的第二部分,我們介紹有機發光二極體的發展歷史以及發光原理,對元件的製程方式、量測原理做一套有系統的介紹。
    論文的第三部分,我們量測真空蒸鍍所製備的熱活化延遲螢光(thermally activated delay fluorescence, TADF)薄膜光物理特性,元件在高水平偶極矩的特性下有相當高的外部量子效率。在此章節後半段,我們初步檢測以旋轉塗佈製備出的薄膜是否具備TADF特性。
    論文的第四部分,我們將介紹聚集誘導放光機制並簡述其歷史,簡介如何架設從紫外光量至紅外光的光譜儀系統,並製備Pt錯合物及其衍生物的薄膜和元件,透過調變發光層厚度、阻擋層mCP厚度以及發光層的比例,藉此來優化近紅外光聚集誘導放光元件。
    論文的第五部分,我們將介紹三重態-三重態放光 (triplet-triplet annihilation , TTA)OLED機制,使用自行架設的瞬態電激發光延遲量測來解釋螢光元件擁有高效率的原因。


    In this thesis, we focus on the photophysical properties of thermally activated delay fluorescence (TADF) and the preparation of aggregation induced emission devices. We also put much emphasis on the variable angle PL intensity measurement and transient EL measurement.
    In the first part of this thesis, we briefly review the current status of solid-state lightings and displays.
    In the second part, we introduce the brief history of organic light emitting diodes (OLEDs) and their working mechanism. Then, we discuss the manufacturing methods of OLEDs and their performance measurement methodology.
    In the third part, we measure the photophysical properties of vacuum deposited TADF films and OLEDs. The devices show increased out-coupling efficiency due to the highly horizontally oriented emission dipoles. In the end of this chapter, we preliminarily investigate the TADF characteristics of some spin-coated organic thin films.
    In the fourth part, we first introduce the emission mechanism and the brief history of aggregation induced emission (AIE) molecule. We demonstrate the spectrometer setup for the luminance measurement which cover the wavelength range from ultraviolet to infrared. We fabricate the films and devices containing Pt emissive complexes. We optimize the near infrared AIE devices through tuning the thicknesses of the emissive layers, the thicknesses of the blocking layers, and the emission layer compositions.
    In the fifth part, we study the transient electroluminescence behaviors of OLEDs with triplet-triplet annihilation characteristics.

    摘要 ii Abstract iii 致謝 iv 目錄 v 圖目錄 viii 表目錄 xii 分子式目錄 xiii 第1章 序論 1 1-1前言 1 1-2 論文架構 3 第2章 有機發光二極體概論 4 2-1 發展歷史 4 2-2 發光原理 6 2-2.1 OLED元件結構及基本原理 6 2-2.2有機材料放光及能量轉移機制 7 2-2.3能量轉移 9 2-2.4 OLED元件發光效率 10 2-3實驗製程及量測原理 12 2-3.1吸收頻譜量測 12 2-3.2光致發光頻譜與光致發光量子產率量測 12 2-3.3瞬態電致發光延遲量測 12 2-3.4變角度光致發光強度量測 12 2-3.5元件量測 13 第3章 熱活化延遲螢光OLED 14 3-1熱活化延遲螢光OLED簡介 14 3-1.1前言 14 3-1.2運作原理和機制 14 3-1.3文獻回顧 15 3-2變角度光致發光量測辦法 17 3-2.1前言與研究動機 17 3-2.2運作原理和機制 18 3-2.3文獻回顧 20 3-2.4儀器架設與量測方法 20 3-3真空熱蒸鍍綠黃光熱活化延遲螢光OLED 23 3-3.1元件製備及結果討論 23 3-3.2薄膜光物理分析 27 3-4濕式製程熱活化延遲螢光OLED 34 3-4.1薄膜製備 34 3-4.2光物理分析 34 3-5小結 41 第4章 聚集誘導發光近紅外光OLED 42 4-1簡介 42 4-1.1前言 42 4-1.2運作原理和機制 43 4-1.3文獻回顧 45 4-2近紅外光光物理量測辦法 48 4-2.1 UV-VIS-NIR光致發光頻譜儀器架設 48 4-2.2 UV-VIS-NIR光致發光量子效率量儀器架設 50 4-2.3近紅外光瞬態光致發光延遲量測 50 4-3 IA2、IA4、IA9、IA23系列光物理 52 4-4 4H、4tBu、4CF3、4Me 系列光物理 58 4-5 NIR元件結果討論 62 4-5.1調變EML厚度 64 4-5.2調變mCP 厚度 80 4-5.3調變K093、EML比例 96 4-6小結 113 第5章 三重態-三重態淬熄OLED 114 5-1三重態-三重態淬熄OLED簡介 114 5-1.1 前言與研究動機 114 5-1.2 三重態-三重態淬熄特性 115 5-1.3文獻回顧 115 5-2 量測架設與辦法 116 5-3元件瞬態電激發光性質探討 117 5-3.1調變客體DMPPP摻雜濃度 117 5-3.2調變客體BCzVBi摻雜濃度 120 5-4小結 123 第6章 結論與未來展望 124

    [1] http://ykuo.ncue.edu.tw/oled/oled_ad.htm.
    [2] http://beaver.ncnu.edu.tw/projects/emag/article/201002/%E9%A1%AF%E7%A4%BA%E5%99%A8%E4%B9%8B%E9%81%8E%E5%8E%BB%E3%80%81%E7%8F%BE%E5%9C%A8%E8%88%87%E6%9C%AA%E4%BE%86.pdf.
    [3] http://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=12876.
    [4] M. Pope, H. P. Kallmann, P. Magnante, The Journal of Chemical Physics 1963, 38, 2042.
    [5] C. W. Tang, S. A. VanSlyke, Applied Physics Letters 1987, 51, 913.
    [6] C. W. Tang, S. A. VanSlyke, C. H. Chen, Journal of Applied Physics 1989, 65, 3610.
    [7] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.
    [8] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151.
    [9] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.
    [10] H. Nakanotani, T. Higuchi, T. Furukawa, K. Masui, K. Morimoto, M. Numata, H. Tanaka, Y. Sagara, T. Yasuda, C. Adachi, Nature Communications 2014, 5, 4016.
    [11] http://www.newhavendisplay.com/oled_page.html.
    [12] https://micro.magnet.fsu.edu/primer/java/jablonski/jabintro/index.html.
    [13] http://www.pooher.com/xinwen/Technical/2013-05-08/404.html.
    [14] http://slideplayer.com/slide/9518979/.
    [15] C. Adachi, SPIE Newsroom 2015.
    [16] K. H. Kim, C. K. Moon, J. H. Lee, S. Y. Kim, J. J. Kim, Advanced materials 2014, 26, 3844.
    [17] C. Ganzorig, M. Fujihira, Applied Physics Letters 2002, 81, 3137.
    [18] W. Li, D. Liu, F. Shen, D. Ma, Z. Wang, T. Feng, Y. Xu, B. Yang, Y. Ma, Advanced Functional Materials 2012, 22, 2797.
    [19] Y. Liu, C. Li, Z. Ren, S. Yan, M. R. Bryce, Nature Reviews Materials 2018, 3, 18020.
    [20] Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang, Advanced materials 2014, 26, 7931.
    [21] C. A. Parker, C. G. Hatchard, Transactions of the Faraday Society 1961, 57, 1894.
    [22] G. Blasse, D. R. McMillin, Chemical Physics Letters 1980, 70, 1.
    [23] M. N. Berberan-Santos, J. M. M. Garcia, Journal of the American Chemical Society 1996, 118, 9391.
    [24] A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, C. Adachi, Advanced materials 2009, 21, 4802.
    [25] T.-L. Wu, M.-J. Huang, C.-C. Lin, P.-Y. Huang, T.-Y. Chou, R.-W. Chen-Cheng, H.-W. Lin, R.-S. Liu, C.-H. Cheng, Nature Photonics 2018, 12, 235.
    [26] T. Lampe, T. D. Schmidt, M. J. Jurow, P. I. Djurovich, M. E. Thompson, W. Brütting, Chemistry of Materials 2016, 28, 712.
    [27] S. Hyun, L. Sunghun, K. Kwon‐Hyeon, M. Chang‐Ki, Y. Seung‐Jun, L. Jeong‐Hwan, K. Jang‐Joo, Advanced materials 2014, 26, 4730.
    [28] L. Zhao, T. Komino, M. Inoue, J. H. Kim, J. C. Ribierre, C. Adachi, Applied Physics Letters 2015, 106, 063301.
    [29] T. D. Schmidt, D. S. Setz, M. Flämmich, J. Frischeisen, D. Michaelis, B. C. Krummacher, N. Danz, W. Brütting, Applied Physics Letters 2011, 99, 163302.
    [30] M. Taneda, T. Yasuda, C. Adachi, Applied Physics Express 2011, 4, 071602.
    [31] http://www.lumlight.cn/material.php?sn=12.
    [32] http://arocorp.com/resources/extinction-ratio/.
    [33] https://www.ansforce.com/post/S1-p360.
    [34] https://www.slideshare.net/TKCheng2/50-61136281.
    [35] D. Yokoyama, A. Sakaguchi, M. Suzuki, C. Adachi, Applied Physics Letters 2009, 95, 243303.
    [36] J. Frischeisen, D. Yokoyama, C. Adachi, W. Brütting, Applied Physics Letters 2010, 96, 073302.
    [37] K. H. Kim, J. L. Liao, S. W. Lee, B. Sim, C. K. Moon, G. H. Lee, H. J. Kim, Y. Chi, J. J. Kim, Advanced materials 2016, 28, 2526.
    [38] J. Mei, Y. Hong, J. W. Lam, A. Qin, Y. Tang, B. Z. Tang, Advanced materials 2014, 26, 5429.
    [39] R. Furue, T. Nishimoto, I. S. Park, J. Lee, T. Yasuda, Angewandte Chemie 2016, 55, 7171.
    [40] J. V. Caspar, E. M. Kober, B. P. Sullivan, T. J. Meyer, Journal of the American Chemical Society 1982, 104, 630.
    [41] J. S. Wilson, N. Chawdhury, M. R. A. Al-Mandhary, M. Younus, M. S. Khan, P. R. Raithby, A. Köhler, R. H. Friend, Journal of the American Chemical Society 2001, 123, 9412.
    [42] W. Siebrand, The Journal of Chemical Physics 1967, 46, 440.
    [43] Q. Li, Z. Li, Advanced science 2017, 4, 1600484.
    [44] J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chemical Communications 2001, 1740.
    [45] Z. Zhao, B. He, B. Z. Tang, Chemical science 2015, 6, 5347.
    [46] Z. Zhao, J. W. Y. Lam, B. Z. Tang, Journal of Materials Chemistry 2012, 22, 23726.
    [47] S.-Y. Kim, Y.-J. Cho, G. F. Jin, W.-S. Han, H.-J. Son, D. W. Cho, S. O. Kang, Physical Chemistry Chemical Physics 2015, 17, 15679.
    [48] K. Kokado, Y. Chujo, The Journal of Organic Chemistry 2011, 76, 316.
    [49] M. Tominaga, Y. Morisaki, Y. Chujo, Macromolecular rapid communications 2013, 34, 1357.
    [50] L. Weber, J. Halama, L. Böhling, A. Brockhinke, A. Chrostowska, C. Darrigan, A. Dargelos, H.-G. Stammler, B. Neumann, European Journal of Inorganic Chemistry 2013, 2013, 4268.
    [51] M. Cocchi, J. Kalinowski, D. Virgili, J. A. G. Williams, Applied Physics Letters 2008, 92, 113302.
    [52] J. R. Sommer, A. H. Shelton, A. Parthasarathy, I. Ghiviriga, J. R. Reynolds, K. S. Schanze, Chemistry of Materials 2011, 23, 5296.
    [53] X. Du, J. Qi, Z. Zhang, D. Ma, Z. Y. Wang, Chemistry of Materials 2012, 24, 2178.
    [54] S. Wang, X. Yan, Z. Cheng, H. Zhang, Y. Liu, Y. Wang, Angewandte Chemie 2015, 54, 13068.
    [55] L. Yao, S. Zhang, R. Wang, W. Li, F. Shen, B. Yang, Y. Ma, Angewandte Chemie 2014, 53, 2119.
    [56] d. M. J. C., W. H. Felix, F. R. H., Advanced materials 1997, 9, 230.
    [57] https://www.photonicsolutions.co.uk/product-detail.php?prod=5923.
    [58] https://en.wikipedia.org/wiki/Pyrrole.
    [59] https://zh.wikipedia.org/wiki/%E5%90%A1%E5%95%B6.
    [60] https://en.wikipedia.org/wiki/Pyrimidine.
    [61] K. Tuong Ly, R.-W. Chen-Cheng, H.-W. Lin, Y.-J. Shiau, S.-H. Liu, P.-T. Chou, C.-S. Tsao, Y.-C. Huang, Y. Chi, Nature Photonics 2016, 11, 63.
    [62] J. Kido, Y. Iizumi, Applied Physics Letters 1998, 73, 2721.
    [63] S. Sinha, A. P. Monkman, Applied Physics Letters 2003, 82, 4651.
    [64] Z. D. Popovic, H. Aziz, Journal of Applied Physics 2005, 98, 013510.
    [65] D. Y. Kondakov, Journal of the Society for Information Display 2009, 17, 137.
    [66] D. Y. Kondakov, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2015, 373.

    QR CODE