研究生: |
蔡政倫 Tsai, Cheng-Lun |
---|---|
論文名稱: |
以蠶絲蛋白為閘極介電層的N型有機薄膜電晶體製備 Fabrication of N-type organic thin-film transistors with silk fibroin as the gate dielectric |
指導教授: |
黃振昌
Hwang, Jenn-Chang |
口試委員: |
甘炯耀
陳盛煒 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 有機薄膜電晶體 、蠶絲蛋白 、PTCDI-C8 、F16CuPc |
外文關鍵詞: | Organic thin-film transisitor, Silk fibroin, PTCDI-C8, F16CuPc |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以蠶絲蛋白作為閘極介電層,選用N型半導體材料PTCDI-C8和F16CuPc,製作有機薄膜電晶體(Organic Thin Film Transistors, OTFTs),探討電晶體特性。在文獻探討中,PTCDI-C8和F16CuPc的製作皆沉積於SiO2上,此種有機薄膜電晶體屬於不可撓曲的元件。本研究選擇PET作為基板,搭配蠶絲蛋白介電層和有機半導體材料,使元件具有可撓曲特性,並分析其電性。
在PTCDI-C8 方面,其載子遷移率為0.08 cm2V-1s-1,Ion/Ioff為6.1x103,雖載子遷移率沒有大於文獻中最高的1.3 cm2V-1s-1,但其臨界電壓(Threshold voltage)約2.4 V遠小於其在SiO2上製作的元件。
N-type材料F16CuPc,優點在於能在大氣環境下保有其元件特性不變。文獻中將F16CuPc沉積於SiO2上,且基板溫度固定於125oC,所得載子遷移率為0.03 cm2V-1s-1。本實驗將F16CuPc於室溫下蒸鍍,沉積於蠶絲蛋白介電層上,其載子遷移率提升至0.33 cm2V-1s-1,且臨界電壓只有1.5 volt。此外,文獻中若在室溫下沉積F16CuPc,其載子遷移率只有0.005 cm2V-1s-1,故可看出在蠶絲蛋白介電層上成長F16CuPc能有效明顯提升其載子遷移率。
In this thesis, we have used silk fibroin as the gate dielectric layer and chosen PTCDI-C8 and F16CuPc as N-type semiconductor materials to fabricate organic thin-film transistors (OTFTs). PTCDI-C8 and F16CuPc were usually deposited on SiO2 in the fabrication of OTFTs. In the present work, PET was used as the substrate and silk fibroin as gate dielectric layer for flexible OTFTs. The device characteristics of N-type organic semiconductors were analyzed.
The field-effect mobility (FE) value and on/off current ratio of PTCDI-C8 TFTs are 0.08 cm2V-1s-1 and 6.1x103, respectively. Although the FE value of PTCDI-C8 TFTs is less than the previously reported value of 1.3 cm2V-1s-1, the threshold voltage is 2.4 V much less than the reported value of ~ 10 V of OTFTs on SiO2/Si.
F16CuPc is a n-type semiconductor material with air stability. We deposited F16CuPc onto silk fibroin at room temperature. The FE value of F16CuPc TFTs is 0.33 cm2V-1s-1 and the threshold voltage is 1.5 V. In contrast, the FE value of F16CuPc TFTs is only 0.005 cm2V-1s-1 if F16CuPc is deposited on SiO2 at room temperature. Furthermore, the FE value is 0.03 cm2V-1s-1 when F16CuPc is deposited on SiO2 at 125oC. It is very effective to enhance the mobility of F16CuPc TFTs by using silk fibroin as gate dielectric layer.
[1] C.S. Kim, S.J. Jo, S.W. Lee, W.J. Kim, H.K. Baik, S.J. Lee, D.K.Hwang, S. Im, Semicond. Sci. Technol. 21/8 (2006) p.1022.
[2] C. H. Wang, C. Y. Hsieh and J. C. Hwang, Adv Mater 23 (14), 1630-1634 (2011).
[3] Hagen Klauk, Chem. Soc. Rev., 2010, 39, 2643–2666.
[4] 王文杰, 以氮化鋁作為介電層之五苯環有機薄膜電晶體-時效性處理與基板溫度效應研究, (2010)
[5] Facchetti A Mater. Today, (2007), 28-37.
[6] Y. Sun, Y. Liu and D. Zhu, J. Mater. Chem., (2005), 15, 53-65.
[7] Katz H E Chem. Mater., (2004), 16, 4748-4756.
[8] C. Reese, M. Roberts, M.-M. Ling, Z. Bao, materials today, (2004), 720-27.
[9] M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd Edition, Oxfold University Press, New York, (1999), 337-340.
[10] Y.Y. Lin, D.J.G., S.F. Nelson, T.N. Jacksin, IEEE Electron Device Lett. 18 (1997) p.87.
[11] Kelly, T.W., et al., Mater. Res. Soc. Symp. Proc. (2003), 169, 771.
[12] Sundar, V.C., et al., Science (2004), 303, 1644.
[13] V. Coropceanu, J. Cornil, D.A. da Silva, Y. Oliver, R. Silbey, J.L. Bredas, Chem. Rev. 107/4 (2007) p.926.
[14] T.W. Kelley, P.F. Baude, C. Gerlach, D.E. Ender, D. Muyres, M.A. Haase, D.E. Vogel, S.D. Thesis, Chem. Mat. 16/23 (2004) p.4413.
[15] 蔡立軒, 氧氮化鉿介電層於五苯環有機薄膜電晶體之特性探討, (2009)
[16] S.M.SZE, Semiconductor Device JOHN WILEY & SONS, INC.
[17] A. Facchetti, M.-H. Yoon, T.-J. Marks, Adv. Mater., (2005), 17, 1705-1725.
[18] R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K.C. Chang, A.C. Mayer, P. Clancy, J.M. Blakely, R.L. Headrick, S. Iannotta, G.G. Malliaras, Chem. Mat. 16/23 (2004) p.4797.
[19] G. Horowitz, Advanced Materials 10(5) (1998) p.365.
[20] Reid J. Chesterfield, John C. McKeen, Christopher R. Newman, Paul C. Ewbank, Deme´trio A. da Silva Filho, Jean-Luc Bre´das, Larry L. Miller, Kent R. Mann, and C. Daniel Frisbie, J. Phys. Chem. B 2004, 108, 19281-19292.
[21] Zhenan Bao, Andrew J. Lovinger, and Janelle Brown, J. Am. Chem. Soc. 1998, 120, 207-208.
[22] A. Facchetti, M.-H.Y., T.J. Marks, Advanced Materials, 17: (2005) p.1705.
[23] Fang-Chung Chen, and Cheng-Hsiang Liao, APPLIED PHYSICS LETTERS 93, 103310, (2008).
[24] Mang-Mang Ling, Zhenan Bao, Organic Electronics 7 (2006) 568-575.
[25] C. H. Wang, C. Y. Hsieh and J. C. Hwang, Adv Mater 23 (14), 1630-1634 (2011).
[26] H.E. Katz, J. Johnson, A.J. Lovinger, T.J.J. Marks, Am. Chem. Soc. (2006), 128, 12851-12869.
(b) K. Balakrishnan, A. Datar, R. Oitker, H. Chen, J. Zuo, L.J. Zang, Am. Chem. Soc., (2005), 127, 10496-10497.
(c) M. D. Levi, M.A. Vorotyntsev, A.M. Skundin, V.E. Kazarinov, J. Electroanal. Chem., (1991), 319, 1-2, 243-261.
(d) J.G. Laquindanu, H.-E. Katz, A. Dodabalapur, A.J.J. Lovinger, Am. Chem. Soc., (1996), 118, 11331-11332.
(e) S. Ando, R. Murakami, J.-I. Nishida, H. Tada, Y. Inoue, S. Tokito, Y.J. Yamashita, Am. Chem. Soc., (2005), 127, 14996-14997.
[27] F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, P.-J. Alnot, Am. Chem. Soc., (1993), 115, 8716-8721.3
(b) Y. Sun, Y. Ma, Y. Liu, Y. Lin, Z. Wang, Y. Wang, C. Di, K. Xiao, X. Chen, W. Qiu, B. Zhang, G. Yu, W. Hu, D. Zhu, Adv. Funct. Mater. (2006), 16, 426-432.
(c) H. Tian, J. Shi, D. Yan, L. Wang, Y. Geng, F. Wang, Adv. Mater. (2006), 18, 2149-2152.
[28] 真空技術與應用,(行政院國家科學委員會精密儀器發展中心出版)
[29] 李正中,薄膜光學與鍍膜技術,(藝軒出版社)
[30] 汪建民, 材料分析, 中國材料科學學會, (2005), 259-273.
[31] 汪建民, 材料分析, 中國材料科學學會, (2005), 73-79.
[32] Fang-Chung Chen, Yu-Jen Huang, Electrochemical and Solid-State Letters, 12, (7), H252-H255, (2009).
[33] Nobuya Hiroshiba, Ryoma Hayakawa, Toyohiro Chikyow, Kiyoto Matsuishi, Yutaka Wakayama, Organic Electronics 12, (2011), 1336-1340.
[34] Ken-ichi Nakayama, Motomi Ishikawa, and Masaaki Yokoyama, Applied Physics Express 2, (2009), 021501.
[35] Laura L. Kosbar, and Teresita O. Graham, Patrick R. L. Malenfant,Christos D. Dimitrakopoulos, Jeffrey D. Gelorme, Appl. Phys. Lett., Vol. 80, No. 14, 8 April 2002.
[36] Seung Hoon Han, Ki Jung Lee, Sun Hee Lee, Jin Jang, Journal of Non-Crystalline Solids 354, (2008), 2870-2874.
[37] Christine Videlot-Ackermann, Sebastien Nenon, Daiki Kanehira, Noriyuki Yoshimoto, Frederic Fages, Synthetic Metals 161, (2011) , 1915-1920.
[38] Kihyun Kim, Tae Ho Kwak, Mi Yeon Cho, JinWoo Lee, Jinsoo Joo, Synthetic Metals 158, (2008), 553-555.
[39] C. Keil, D. Schlettwein, Organic Electronics 12, (2011), 1376-1382.
[40] Antoine Kahn, Norbert Koch, Weiying Gao, ELECTRICAL PROPERTIES OF INTERFACES, 2529-2547.
[41] Rongbin YE, Mamoru BABA and Kunio MORI, Jpn. J. Appl. Phys., Vol. 44, No. 19 (2005).
[42] Yajie Zhang, Huanli Dong, Qingxin Tang, Yudong He and Wenping Hu, J. Mater. Chem., 2010, 20, 7029-7033 | 7029.
[43] Shizuyasu Ochiai, Kunjithapatham Sethuraman, Kenzo Kojima and Teruyoshi Mizutani, Proc. of SPIE Vol. 7054 70540C-2.
[44] Sébastien Nénon, Daiki Kanehira, Noriyuki Yoshimoto, Frédéric Fages, Christine Videlot-Ackermann, Thin Solid Films 518, (2010), 5593-5598.
[45] YAN Dong-Hang, PAN Feng, QIAN Xian-Rui, HUANG Li-Zhen, WANG Hai-Bo, CHIN. PHYS. LETT. Vol. 28, No. 7, (2011), 078504.
[46] Dimas G. de Oteyza, Esther Barrena, Stefan Sellner, J. Oriol Osso´, and Helmut Dosch, J. Phys. Chem. B 2006, 110, 16618-16623.
[47] Donghang Yan, Tong Wang, Daniel Ebeling, Junliang Yang, Chuan Du, Lifeng Chi, Harald Fuchs, and Donghang Yan, J. Phys. Chem. B 2009, 113, 2333-2337.