研究生: |
余青芳 Yu, Ching-Fang |
---|---|
論文名稱: |
TE01模磁旋返波震盪器之研究 TE01 Gyrotron Backward-Wave Oscillator |
指導教授: |
張存續
Chang, Tsun-Hsu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 57 |
中文關鍵詞: | 磁旋返波 、震盪器 |
外文關鍵詞: | TE01, Gyrotron, BWO |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磁旋振盪器是利用電子迴旋脈射原理而產生與電子同調的電磁波,磁旋返波振盪器有頻率連續可調與寬頻寬的特性,操作的電磁波模式廣範地選用最低基本模式以簡化實驗及避免高次模競爭,但在高頻段的發展趨勢下,高次模操作可有效解決高頻率結構過小的問題。本論文設計並實做一ka頻段緩斜結構的圓形波導TE01模磁旋返波震盪器, TE31模式一次諧波振盪是影響操作穩定的主要競爭模式。利用穩定解計算程式模擬主模與各競爭模的起振電流以判斷穩定操作條件,因單模耦合器輸出對非主模式所造成的之短路邊界亦在模擬中考慮,在利用加入分佈式吸波作用段可有效壓抑非主模振盪。
實驗系統中包含一新式高效能圓形波導TE01模耦合器,其高純度轉換率能避免因耦合輸出造成的模式轉變,在對接特性測量中得出穿透率達97%而1-dB頻寬於34GHz中心頻率達5.8GHz並與模擬高度吻合。
初階段實驗結果指出分佈式吸波作用段確實可有效壓抑非主模振盪而達穩定操作,最高輸出能量為46kW,效率與頻寬各為8%及3.7%。
The gyrotron backward-wave oscillator (gyro-BWO) is a continuously tunable source of coherent millimeter-wave radiation based on electron cyclotron maser. The fundamental mode operation is generally adopted to simplify the experiment which can avoid the mode transition problem and the mode competition behavior. As the high frequency requirement increase, high order mode operation is an effective method to solve the structure size limit. A taper structure Ka-band gyro-BWO which operated at TE01 mode in cylindrical waveguide is designed in this thesis. The mode competition behavior is discussed which major unwanted competing mode is TE31 first harmonic oscillation. A single mode stationary code is employed to simulate the start oscillation current and nonlinear behavior of each interaction mode. The relative value of start oscillation current between operating mode and the other waveguide modes are applied to judge the operating stability. The question which we must consider is the short end boundaries to the TE31 mode. As a result, the close cavity structure brings about the gyromonotron dynamic which have lower oscillation threshold. A distributed loss is applied to suppress the unwanted oscillation but operating mode.
A novel design and of high spectral purity Ka-band TE01 mode converter are presented to avoid the mode transition when wave coupled out. Back-to-back transmission measurements show excellent agreement with computer simulations. The measured optimum transmissions are 97% with 1-dB bandwidth of 5.8 GHz at center frequency 34 GHz. In addition to high conversion efficiency, high mode purity, and broad bandwidth, this converter also features easy construction and compact size.
The preliminary experimental results show the spurious modes can be suppressed by distributed loss. The maximum output power is 46kW with efficiency 8% and the bandwidth is 3.7%.
References:
1. K.R. Chu, Rev. Mod. Phys. 76(2), 489, 2004.
2. P. Forman, Rev. Mod. Phys. 67, 397, 1995.
3. A. V. Gaponov-Grekhov and V.L. Granatstein, “Applications of High-Power Microwaves”, Artech House, Boston.London, 1994.
4. V. L. Granatstein, B. Levush, B. G. Danly, and R. K. Parker, IEEE Trans. Plasma Sci. 25, 1322, 1997.
5. A.S. Gilmour Jr., “Microwave Tubes”, Artech House, Norwood, 1986.
6. J.W. Gewartowski and H.A. Watson, “Principles of Electron Tubes”, 1970.
7. S.H. Gold and G. S. Nusinovich, Rev. Sci. Instrum. 68, 3945, 1997.
8. V.L. Granatstein, G. S. Nusinovich, M. Blank, K. Felch, R. M. Gilgenbach, H. Guo, H. Jory, N. C. Luhmann, D. B. McDermott, J. M. Rogers, and T. A. Spencer, “Gyrotron oscillators and amplifiers in High-Power Microwave Sources and Technologies”, edited by R. J. Barker and E. Schamiloglu, IEEE, New York, 156-198, 2001.
9. A. W. Fliflet, Int. J. Electron. 61, 1049 1986.
10. K. R. Chu and A.T. Lin, IEEE Trans. Plasma Sci. 16, 90,1988.
11. T. W. Stix, Waves in Plasmas, AIP, New York, 1992.
12. K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, and T. T. Yang, Phys. Rev. Lett. 81,4760, 1998.
13. K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, T. T. Yang and Demostehenes J. Dialetis, IEEE Trans. Plasma Sci. 27, 1999.
14. G. P. Timms and G. F. Brand, Appl. Phys. Lett. 68, 2899, 1996.
15. T. Idehara, I, Ogawa, S. Mitsudo, M. Pereyaslavets, N. Nishida, and K. Yoshida, IEEE Trans. Plasma Sci. 27, 340, 1999.
16. C. S. Kou, S. H. Chen, L. R. Barnett, H. Y. Chen, and K. R. Chu, Phys. Rev. Lett. 70, 924, 1993.
17. C. S. Kou, Phys. Plasmas, 1, 3093,1994.
18. M. A. Basten, W. C. Guss, K. E. Kreischer, R. J. Temkin, and M. Caplan, Int. J. Infr. Millimeter Waves, 16, 889, 1995.
19. A. K. Ganguly and S. Ahn, Int. J. Electronics, 67, 261, 1989.
20. T. A. Spencer, C. E. Davis, K. J. Hendricks, F. J. Agee and R. M. Gilgenbach, IEEE Trans. Plasma Sci. 4, 630, 1996.
21. C. S. Kou, C. H. Chen, and T. J. Wu, Phys. Rev. E. 57, 7162, 1998.
22. K. Ganguly and S. Ahn, Appl. Phys. Lett. 54, 514, 1989.
23. M. T. Walter, R. M. Gilgenbach, J. W. Luginsland, J. M. Hochman, J. I. Rintamaki, R. L. Jaynes, Y. Y. Lau, and T. A. Spencer, IEEE Trans. Plasma Sci. 24, 636, 1996.
24. A. T. Lin and C. C. Lin, Phys. Fluids B. 5, 2314, 1993.
25. G. S. Nusinovich, and O. Dumbrajs, IEEE Trans. Plasma Sci. 24, 620, 1996.
26. S. H. Chen, K. R. Chu, and T. H. Chang, Phys. Rev. Lett. 85, 2633, 2000.
27. G. S. Nusinovich, A. N. Vlasov, and T. M. Antonsen, Jr., Phys. Rev. Lett. 87, 218301, 2001.
28. T. H. Chang, S. H. Chen, L. R. Barnett and K. R. Chu, Phys. Rev. Lett. 87, 064802, 2001.
29. A. Grudiev and K. Schunemann, IEEE Trans. Plasma Sci. 30, 851, 2002.
30. S. H. Chen, T. H. Chang, K. F. Pao, C. T. Fan and K. R. Chu, Phys. Rev. Lett. 89, 268303, 2002.
31. J. M. Wachtel and E. J. Wachtel, Appl. Phys. Lett. 37, 1059, 1980.
32. S. Y. Park, V. L. Granatstein, and R. K. Parker, Int. J. Electronics, 57, 1109, 1984.
33. A. T. Lin, Phys. Rev. A. 46, 4516, 1992.
34. N. S. Ginzburg, G. S. Nusinovich, and N. A. Zavolsky, Int. J. Electron. 61, 881, 1986.
35. A. T. Lin, Z. H. Yang, and K. R. Chu, , IEEE Trans. Plasma Sci. 16, 129, 1988.
36. K. R. Chu, M. E. Read, and A. K. Ganguly, IEEE Trans. Plasma Sci. 28, 620, 1980.
37. P. Sprangle and P. Smith, J. Applied Phys. 51, 3001, 1980.
38. M.T. Walter, R.M. Gilgenbach, J.W. Luginsland, J.M. Hochman, J.I. Rintamaki, R.L. Jaynes, Y.Y. Lau and T.A. Spencer, IEEE Trans. Plasma Sci. 24, 636, 1996.
39. K.R. Chu, L.R. Barnett, H.Y. Chen, S.H. Chen, Ch. Wang, Y.S. Yeh, Y.C. Tsai, T.T. Yang, and T.Y. Dawn, Phys. Rev. Lett. 74, 1103, 1995.
40. L.R. Barnett, L.H. Chang, H.Y. Chen, K.R. Chu, W.K. Lau, and C.C. Tu, Phys. Rev. Lett. 63, 1062, 1989.
41. A. H. McCurdy, Appl. Phys. Lett. 66, 1845, 1995.
42. A. Grudiev, J. Jelonnek and K. Schunemann, Phys. Plasmas, 8, 2963, 2001.
43. T. H. Chang and S. H. Chen, Phys. Plasmas, 12, 013104, 2005.
44. T. H. Chang, K.F. Pao, S.H. Chen, and K.R. Chu, Int. J. Infrared and Millimeter Waves, 24, 1415, 2003.
45. K. F. Pao, T. H. Chang, C. T. Fan, S. H. Chen, C. F. Yu, and K. R. Chu, Phys. Rev. Lett., 95, 185101 (2005)
46. J.M. Baird and W. Lawson, “Microwave TubesMagnetic injection gun design for gyrotron application ”.
47. C. F. Yu and T. H. Chang, IEEE Transactions on Microwave Theory and Techniques, 53, 12, 2005.
48. HFSS, Ansoft Corp. Available: http://www.ansoft.com/
49. A. H. McCurdy and J. J. Choi, 47, 164. 1999.
50. M. Blank, B. G. Danly, and B. Levush, IEEE Trans. Plasma Sci., 27, 405, 1999
51. M. Garven, J. P. Calame, B. G. Danly, K. T. Nguyen, B. Levush, F. N. Wood, and D. E. Pershing, IEEE Trans. Plasma Sci., 30, 2002.
52. T. Idehara, K. Shibutani, H. Nojima, M. Pereyaslavets, K. Yoshida, I. Ogawa, and T. Tatsukawa, International Journal of Infared and Millimeter Waves, 19, 10,1998.
53. K. R. Chu, and A. T. Lin, IEEE Transactions on Plasma science, 16, 1998.
54. D. B. Mcdermott, H. H. Song, Y. Hirata, A. T. Lin, L. R. Barnett, T. H. Chang, H. L. Hsu, P. S. Marandos, J. S. Lee, K. R. Chu, and N. C. Luhmann, IEEE Transactions on Plasma science, 30,, 2002.
55. W. He, A. W. Cross, A. D. R. Phelps, K. Ronald, C. G. Whyte, S.V. Samsonov, V. L. Bratman, and G. G. Denisov, Applied Physics Letters 89, 09154, 2006.
56. T. H. Chang, C. T. Fan, K. F. Pao, K. R. Chu, and S. H. Chen , Appl. Phys. Lett. 90, 191501 2007.
57. He, W. Cross, A.W. Whyte, C.G. Young, A.R. Phelps, A.D.R. Ronald, K. Rafferty, E.G. Thomson, J. Robertson, C.W., Speirs, D.C., Infrared and Millimeter Waves, 27. 2004.
58. S. Y. Park, R.H. Kyser, C. M. Armstrong, R. K. Parker and V. L. Granatatein, Transactions on Microwave Theory and Techniques, 3, 18, 1990.
59. R. L. Schriever, C. C. Johnson, Proc. Of the IEEE, 1966.
60. M. A. Basten, W. C. Guss, K. E. Kreischer, R. T. Temkin, and M. Caplan, J. Infrared and Millimeter Waves, 16,1995.