簡易檢索 / 詳目顯示

研究生: 羅虎
RahulKumar Singh
論文名稱: 金及銀金屬催化之新合成高度官能化之碳環與雜環有機分子之途徑
Gold & Silver-Catalyzed New Synthetic Methods to Access Highly Functionalized Carbocyclic and Heterocyclic Organic Molecules
指導教授: 劉瑞雄
Liu,Rai-Shung
口試委員: 彭之皓
Peng, Chi-How
莊士卿
Chuang, Shih-Ching
陳銘洲
Chen, Ming-Chou
謝仁傑
Hsieh, Jen-Chieh
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 603
中文關鍵詞: 金催化銀催化碳環雜環
外文關鍵詞: Gold-Catalyzed, Silver-catalyzed, Carbocyclo, Heterocyclo
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文介紹了金及銀金屬催化之新合成方法製成高度官能之碳環和雜環有機分子。其中包括使用金和銀金屬將各種方便取得的基質高效轉化為廣泛、多功能的碳環和雜環產物。為了方便理解,本文被分為四個章節。
    第一章描述了以金催化使硝基芳烴及丙炔酸衍生物進行1,2-胺基硝基化產生α-亞胺腈;這種新的反應適用於不同的丙炔衍生物和硝基芳烴來產生各種實用的1,2-氧化官能基化的炔類,而此結構設計可以應用於農業用藥之中。
    第二章論述金金屬催化行亞胺化/曼尼希反應,經由連續反應使容易取得的3-烯-1-炔醯胺透過一鍋化高位向選擇性反應轉變為1,5-亞胺基化合物。該反應與多元化的3-烯-1-炔醯胺、醛和苯胺都可進行,且具有優良的非對映選擇性及產率。我們的對照實驗指出3-烯-1-炔醯胺之金催化胺化,得到α亞氨基烯丙基金中間體,隨後再與亞胺離子反應,進行立體選擇性的曼尼希反應。若以那些無環烯烴3-烯-1-炔醯胺進行反應則反應無選擇性,而若使用環烯烴類則具有順式選擇性。一個開放的過渡狀態使我們能夠合理的推測這些觀測到的立體選擇性是經由一個antiperiplanar構象所產生。

    第三章描述了經由兩個不同的途徑利用金金屬催化炔醯胺、丙二烯酰胺以及α-芳香基重氮腈進行[3 + 2]環化得到1-胺基-1H-茚;這些環化的成功歸功於α氰基芳基卡賓用來激活離子通道的高親電性。茚分子是極為需要的天然產物,所得之1-氨基-1H-茚可以被用於生物活性分子的合成。
    第四章介紹了新穎的金金屬催化吲哚及α-芳腈重氮進行分子間卡賓官能基化: 通過雙親核加成反應可以合成雙吲哚基-2-苯基乙腈。本反應顯示各種範圍的官能基容忍度及相對應的產率,這可以應用在許多吲哚生物鹼如砷啉A和砷啉B,抑制劑,吲哚-3-甲醇和Streptindole的核心結構上,這些是在許多治療疾病非常有用的分子。


    This dissertation describes Gold & Silver-Catalyzed New Synthetic Methods to Access Highly Functionalized Carbocyclic and Heterocyclic Organic Molecules. It includes gold and silver metal which promotes efficient transformations of a variety of readily available substrates to wide range of synthetically useful carbocyclic and heterocyclic products. For better understanding, this thesis has been divided into four chapters
    The first chapter describes the Gold-Catalysed 1,2-iminonitronation of propiolate derivatives with nitrosoarenes to give α-imidoyl nitrones; This new reactions are applicable to diverse propiolate derivatives and nitrosoarenes to implement 1,2-oxidative functionalization of alkynes which finds various application in Agrochemicals.
    The second chapter deals with the Gold-Catalysed imination/Mannich reaction cascades on readily available 3-en-1-ynamides enable the diastereoselective synthesis of 1,5-iminoamino compounds in one-pot operation. The reactions work well with diversified 3-en-1-ynamides, aldehydes and anilines with good to excellent diastereoselectivities. Our control experiments indicate gold-catalyzed aminations of 3-en-1-ynamides to yield -imino allylgold intermediates that react subsequently with iminiums to implement the Mannich reactions stereoselectively. The reactions proceed with anti-selectvity for those 3-en-1-ynamides bearing acyclic alkenes whereas syn-selectivity is for their cycloalkene-based analogues. An open-transition state can satisfactorily rationalize these observed stereoselectivities based on an antiperiplanar conformation.
    The third chapter describes Gold-catalyzed [3+2]-annulations of α-aryl diazonitriles with ynamides and allenamides yield 1-amino-1H-indenes in two distinct pathways; the success of these annulations relies on the high electrophilicity of α-cyano arylgold carbenes to activate an ionic pathway. Indene molecule is highly desirable moiety in natural product and the resulting 1-amino-1H-Indenes can be used for the synthesis of bioactive molecules.
    The fourth chapter show development of novel Gold-Catalyzed intermolecular carbenoid functionalization of indoles with α-aryl diazo nitrile: Synthesis of bis(indolyl)-2-phenylacetonitrile via Double nucleophilic Addition Reaction. Reactions shows variety of scopes and yield a BIMs derivatives which is the core structures in many indole alkaloids such as Arsindoline A and B, Arundine, Viberindole A and Streptindole, these are very useful molecule in the treatment of many deseases.

    List of Schemes Chapter I Scheme 1: Acess to α-oxo-gold-carbenes: Intra- vs intermolecular oxidation 4 Scheme 2: 1,2-Difuntionalization of Aminoalkynes using Oxidants 5 Scheme 3: AuBr3-catalyzed cyclization reaction of o-(alkynyl) nitrobenzene 5 Scheme 4: [3+2]-Annulations of nitrosoarenes and alkynes 6 Scheme 5: Oxidative [3+2]-cycloadditions for 1,5-enynes 7 Scheme 6: Reaction mechanisms for oxidative [4C+2]-cycloadditions 8 Scheme 7: regioselective umpolung reaction using alkynyl aldehydes 9 Scheme 8: Preparation of ethyl 3-phenylpropiolate (1-1a) 12 Scheme 9: Synthesis of Nitrosobenzene & List of Nitrosobenzene 12 Scheme 10: Formation of diazene oxide 17 Scheme 11: A plausible reaction mechanism 18 Chapter II Scheme 1: Hydroamination reaction over alkyne 126 Scheme 2: A3 coupling Reaction 126 Scheme 3: Gold-catalyzed hydroamination Reaction 127 Scheme 4: A3 Coupling catalyzed by gold in water 128 Scheme 5: AA3 Coupling catalyzed by Copper in water and organic solvent 129 Scheme 6: Hydrative aldol reactions of 2-en-1-ynamides and aldehyde with water 129 Scheme 7: [4+2] cycloaddition between ynamides and imines 130 Scheme 8: Synthesis of N-methyl-1,4-dihydropyridines 131 Scheme 9: Synthesis of propargyl ethyl ethers by an A3-coupling-type reaction 132 Scheme 10: Catalytic functionalizations of alkynes with amines 133 Scheme 11: Preparation of 3-en-1-ynamide (2-1a) 136 Scheme 12: Synthesis of N-methyl-N-(3-methylenehept-1-yn-1-yl) methane 136 sulfonamide Scheme 13: Reactions with cycloalkane-derived ynamides 142 Scheme 14: Chemical elaborations of products 142 Scheme 15: Rationales for the anti- and syn-Selectivity 144 Chapter III Scheme 1: Formation of gold carbenes from diazo compounds 325 Scheme 2: General reactivity of ynamides in gold catalysis 326 Scheme 3: Au(I)-Catalyzed [3 + 2] Cycloaddition Vinyldiazoacetates & Enol Ethers 327 Scheme 4: [3 + 2] Cycloaddition of Nitriles with alkenyl diazo compounds 328 Scheme 5: Proposed Mechanisms for the Formal [3+3]-Cycloaddition 328 Scheme 6: Gold-catalyzed cyclopropanation and cyclopenetenation 329 Scheme 7: [3 + 2] Cycloaddition Reaction of Aryldiazoesters with Terminal Alky 330 Scheme 8: Rhodium-catalyzed C−H functionalization of diazo molecule 331 Scheme 9: Rhodium and copper-catalyzed tandem annulation 332 Scheme 10: General scheme with few useful reaction 334 Scheme 11: Preparation of ynamides 337 Scheme 12: Synthesis of 2-diazo-2-phenylacetonitrile 338 Scheme 13: gold-catalyzed annulation with meta substituted diazo compounds 341 Scheme 14: Additional reaction 342 Scheme 15: Gold-catalyzed cyclopropenation of internal yanmides 342 Scheme 16: Postulated mechanism for [3+2]-annulation reaction 343 Chapter IV Scheme 1: Metal-mediated carbene transfer from diazo compounds. 495 Scheme 2: Ru-Catalyzed C2-Selective Functionalization of NH-Indole 497 with diazo acetates Scheme 3: Mechanism of Iron(II)-Catalyzed Curtius-like Rearrangement 498 Scheme 4: Proposed Mechanisms for the construction of BIMs 499 Scheme 5: Plausible reaction pathway for the unsymmetric double arylation 500 of nitrodiazoesters Scheme 6: Proposed mechanism for Synthesis of BIMs with alloxane 501 Scheme 7: Proposed mechanism of the iridium/iminium co-catalyzed 502 three-component reaction Scheme 8: Concept of carbenoid functionalization with Diazo compounds 503 Scheme 9: Synthesis of N-methyl indole 507 Scheme 10: Synthesis of N-phenyl indole 507 Scheme 11: Synthesis of 2-diazo-2-phenylacetonitrile 507 Scheme 12: Proposed mechanism for Gold-Catalyzed Carbenoid 512 functionalization of indole List of Tables Chapter I Table 1: Reactions over various catalysts 10 Table 2: Catalyst Reaction over various alkynes. 14 Table 3: Catalytic reactions with various nitrosoarenes 16 Chapter II Table 1: Tests over various metal catalysts 134 Table 2: Reactions with various aldehydes and anilines 137 Table 3: Reactions with substituted 3-en-1-ynamides 140 Chapter III Table 1: Catalyst reactions with various diazo species and catalysts 335 Table 2: [3+2]-Annulations with ynamides and diazonitriles 339 Chapter IV Table 1: Catalyst reactions with various diazo species and catalysts 505 Table 2: Substrate scope for double nucleophilic addition reaction of 508 N-Methyl Indole and diazonitriles Table 3: scope of reaction with various diazo nitrile 510 List of Figures Chapter I Figure 1: Singlet and triplet carbenes 2 Figure 2: Fischer and Schrock carbenes 3 Figure 3: List of Ethyl propiolate substrates 12 Figure 4: ORTEP diagram of 1-3j and 1-6a 19 Chapter II Figure 1: List of 3-en-1-yanamide substrates 135 Figure 2: ORTEP diagram of 2-4k, 2-5e, 2-5i, 2-5k 146 Chapter III Figure 1: List of yanmides substrates 336 Figure 2: List of diazo substrates 337 Figure 3: ORTEP diagram of 3-4a and 3-3a’ 344 Chapter IV Figure 1: Classification of carbene precursors 496 Figure 2: List of alkaloids and bioactive molecules with BIM core structure 504 Figure 3: Indole substrate 506 Figure 4: List of diazo substrates 506 Figure 5: ORTEP diagram of 4-3j and 4-3p’ 513

    3 References:
    1. a) Comprehensive reviews on -diazocarbonyl compounds, see: Ye, T.;
    McKervey, M. A. Chem. Rev. 1994, 94, 1091. b) Padwa A.; Austin, D. J. Angew.
    Chem., Int. Ed. 1994, 33, 1797. c) Padwa A.; Weingarten, M. D. Chem. Rev.
    1996, 96, 223. d) Doyle,; McKervey M. A.; Ye, T. in Modern Catalytic Methods
    for Organic Synthesis with Diazo Compounds, Wiley, New York, 1998. e) Doyle
    M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911. f) Padwa, A. J. Organomet.
    Chem. 2001, 3, 617. g) Hodgson, D. M.; Pierard, F. Y. T. M.; Stupple, P. A.
    Chem. Soc. Rev. 2001, 30, 50. h) Davies H. M. L.; Beckwith, R. E. J. Chem. Rev.
    2003, 103, 2861.
    2. a) Doyle, M.P.; Duffy, R.; Ratnikov, M. Chem. Rev. 2010,110, 704. b) Gil
    -lingham, D.; Fei, N. Chem. Soc. Rev. 2013, 42, 4918. c) Sun, X.L.; tang, Y. Acc.
    Chem. Res. 2008, 41, 937. d) Rh (I)-catalyzed sequential C(sp)–C(sp3) and
    C(sp3)–C(sp3) bond formation through migratory carbene insertion, Xia, Y.;
    369
    Feng, S.; Liu. Z. Angew. Chem. Int. Ed. 2015, 54, 7891. e) Ford, A.; Miel, H.;
    Ring, A.; Slattery, C. N.; Maguire, A. R.; Mckervey, M. A. Chem.
    Rev. 2015, 115, 9981.
    3. a) Manning, J. R.; Davies, H. M. L. Nature 2008, 451, 417. b) Morton, D.;
    Davies, H. M. L. Chem. Soc. Rev. 2011, 40, 1857. c) Doyle, M. P.; Duffy, R.;
    Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704.
    4. a)Yang, J.; Wu, H.; Shen, L.; Qin, Y. J. Am. Chem. Soc. 2007, 129, 13794. b)
    Liu, B.; Zhu, S.-F.; Zhang, W.; Chen, C.; Zhou, Q-L. J. Am. Chem.
    Soc. 2007, 129, 5834. c) Zhu, S.-F.; Song, X.-G.; Li, Y.; Cai, Y.; Zhou, Q.-L. J.
    Am. Chem. Soc. 2010, 132, 16374.
    5. Zhu, S.-F.; Zhou, Q.-L. Natl. Sci. Rev. 2014, 1, 580.
    6. Gold Catalyst for Carbene-Transfer Reactions from Ethyl Diazoacetate. Fructos,
    M. R.; Belderrain, T. R.; de Frémont, P.; Scott, N. M.; Nolan, S. P.;
    Díaz-Requejo, M. M.; Pérez, P. J. Angew. Chem. Int. Ed. 2005, 44, 5284.
    7. Evano, G.; Coste, A.; Jouvin, K. Angew. Chem. 2010, 122, 2902; Angew. Chem.
    Int. Ed. 2010, 49, 2840.
    8. For recent reviews on the chemistry of ynamides, see: a) DeKorver, K. A.; Li, H.;
    Lohse, A. G. Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110,
    5064. b) Evano, G.; Jouvin K.; Coste, A. Synthesis 2013, 45, 17. c) Wang, X.;
    Yeom, H.; Fang, L.; He, S.; Ma, Z.; Kedrowski B. L.; Hsung, R. P. Acc. Chem.
    Res. 2014, 47, 560.
    9. Briones, J. F.; Davies, H. M. L. J. Am. Chem. Soc. 2013, 135, 13314.
    10. Lonzi, G.; Lo´pez, L. A. Adv. Synth. Catal. 2013, 355, 1948.
    11. a) Pagar, V. V.; Jadhav, A. M.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 20728. b)
    Raczyńska, E. J.; Kosińska, W.; Osmialowski, B.; Gawinecki, R. Chem. Rev.
    2005, 105, 3561. c) Druellinger, M. L. J. Heterocycl. Chem. 1976, 13, 1001. d)
    Xu, Z.-J.; Zhu, D.; Zeng, X.; Wang, F.; Tan, B.; Hou, Y.; Ly, Y.; Zhong, G.
    Chem. Commun. 2010, 46, 2504.
    12. a) Lou, Y.; Horikawa, M.; Kloster, R. A. J. Am. Chem. Soc. 2004, 126, 8916. b)
    Davies, H. M. L.; Lee, G. H. Org. Lett. 2004, 6, 1233. c) Briones, J. F.; Hansen,
    J.; Hardcastle, K. I. J. Am. Chem. Soc. 2010, 132, 17211. d) Goto, T.; Takeda, K.;
    Shimada, N. Angew. Chem. Int. Ed. 2011, 50, 6803.
    13. Cui, X.; Xu, X.; Lu, H. J. J. Am. Chem. Soc. 2011, 133, 3304.
    370
    14. Uehara, M.; Suematsu, H.; Yasutomi, Y. J. Am. Chem. Soc. 2011, 133, 170.
    15. a) Briones, J. F.; Davies, H. M. L. Org. Lett., 2011, 13, 3984. b) Briones, J. F.;
    Davies, H. M. L. J. Am. Chem. Soc., 2012, 134 ,11916.
    16. a) Park, E. J.; Kim, S. H.; Chang, S. J. Am. Chem. Soc. 2008, 130, 17268. b)
    Huffman, J. W.; Padgett, L. W. Curr. Med. Chem. 2005, 12, 1395.
    17. Qiu, L.; Huang, D.; Xu, G.; Dai, Z.; Sun, J. Org. Lett. 2015, 17, 1810.
    18. Liu, K.; Zhu, C.; Min, J.; Peng, S.; Xu, G.; Sun, J. Angew. Chem. Int. Ed. 2015,
    54, 12962.
    19. a) Doyle, M. P.;In Comprehensive Organometallic Chemistry II, E. W. Abel, F.
    G. A. Stone, Ed.; Pergamon: Oxford UK, vol 12, 387-469. b) Doyle, M. P.;
    McKervy, M. A.; Ye, T.; Modern Catalytic Method for Organic Synthesis with
    Diazo Compounds: From Cyclopropanes to Ylides; Wiley; New York, 1998. c)
    Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. d) Zhang, Z.;
    Wang, J. Tetrahedron 2008, 64, 6577. e) Liu, L.; Zhang, J. Chem. Soc. Rev. 2016,
    45, 506-516. f) Nolan, S. P. Acc. Chem. Res. 2011, 44, 91.
    20. For chemistry of cyclopropene compounds, see selected reviews: a) Padwa, A.
    Acc. Chem. Res. 1979, 12, 310. b) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem.
    Rev. 2007, 107, 3117. c) Walsh, R. Chem. Soc. Rev. 2005, 34, 714. d) Baird, M.
    S. Chem. Rev. 2003, 103, 1271.
    21. For the utility of alkylidenecyclopropane derivatives, see recent reviews: a)
    Brandi, A.; Cicchi, S.; Cordero, F. M.; Goti, A. Chem. Rev. 2014, 114, 7317. b)
    Zhang, D.-H.; Tang, X.-Y.; Shi, M. Acc. Chem. Res. 2014, 47, 913.
    22. Rh: a) Lindsay, V. N. G.; Fiset, D.; Gritsch, P. J.; Azzi, S.; Charette, A. B. J. Am.
    Chem. Soc. 2013, 135, 1463. b) Davis, H. M. L.; Lee, G. H. Org. Lett. 2004, 13,
    2117. c) Edwards, A.; Rubin, M. Tetrahedron 2015, 71, 3237. d) Denton, J. R.;
    Cheng, K.; Davies, H. M. L. Chem. Commun. 2008, 1238. e) Adly, F. G.;
    Gardniner, M. G.; Ghanem, A. Chem. Eur. J. 2016, 22, 3447. Cu: f) Swenson, A.
    K.; Higgins, K. E.; Brewer, M. G.; Brennessel, W. W.; Coleman, M. G. Org.
    Biomol. Chem. 2012, 10, 7483. g) Thomas, T. J.; Merritt, B. A.; Lemma B. E.;
    Mckoy, A. M.;. Nguyen, T. N; Swenson, A. K.; Mills, J. L.; Coleman, M. G. Org.
    Biomol. Chem. 2016, 14, 1742. Ag: h) Briones, J. F.; Davis, H. M. L. Org. Lett.
    2011, 13, 3984. Co: i) Cui, X.; Xu, X.; Lu, H.; Zhu, S.; Wojtas, L.; Zhang, X. P.
    J. Am. Chem. Soc. 2011, 133, 3304. Ir: j) Uehara, M.; Suematsu, H.; Yasutomi,
    371
    Y.; Katsuki, T. J. Am. Chem. Soc. 2011, 133, 170. Au: k) Briones, J. F.; Davis, H.
    M. L. J. Am. Chem. Soc., 2012, 134, 11916.
    23. Park, E. J.; Kim, S. H.; Chang, S. J. Am. Chem. Soc. 2008, 130, 17268.
    24. See selected examples: a) Gregg, T. M.; Farrugia, M. K.; Frost, J. R. Org. Lett.
    2009, 11, 4434. b) Huval, C. C.; Singleton, D. A. J. Org. Chem. 1994, 59, 2020.
    c) Ma, S.; Zhang. J. Angew. Chem. Int. Ed. 2003, 42, 183. d) Lu, T.; Hayashi, R.;
    Hsung, R. P.; De Kover, K. A.; Lohse, A. G.; Song, Z.; Tang, Y. Org. Biomol.
    Chem. 2009, 7, 3331. e) Lindsay, V. N.; Fiset, D.; Gritsch, P. J.; Azzi, S.;
    Charette, A. B. J. Am. Chem. Soc. 2013, 135, 1463.
    25. a) Zhang, L. Acc. Chem. Res. 2014, 47, 877. b) Hashmi, A. S. K. Angew. Chem.
    Int. Ed. 2008, 47, 6754. c) Bhunia, S.; Liu, R.-S. J. Am. Chem. Soc. 2008, 130,
    16488. d) Benitez, D.; Shapiro, N. D.; Tkatchouk, E.; Wang, Y.; Goddard III, W.
    A.; Toste, F. D. Nature Chemistry 2009, 1, 482. e) Seidel, G.; Mynott, R.;
    Fürstner, A. Angew. Chem. Int. Ed. 2009, 48, 2510. f) Jiménez-Núñez, E.;
    Clavarie, C. K.; Bour, C.; Cardenas, C. D. J.; Echavarren, A. M. Angew. Chem.
    Int. Ed. 2008, 47, 7892.
    26. a) Chuprakov, S.; Gevorgyan, V. Org. Lett. 2007, 9, 4463. b) Bauer, J. T.;
    Hadfield, M. S.; Lee, A.-L. Chem. Commun., 2008, 6405. c) Hadfield, M. S.;
    Jonas, L.; Haller, L.; Lee, A.-L.; Maegregor, S. A.; O’neill, J. A. T.; Watson, A.
    M. Org. Biomol. Chem. 2012, 10, 4433.
    27. x-ray crystallographic data of compounds 3a’, 4a, 7a and 6d were deposited in
    Cambridge Crystallographic Data Center: 3a’, CCDC 1469310; 4a CCDC
    1469309; 7a 1469306 and 6d 1469307.
    28. See selected examples: a) Liu, B.; Fan, Y.; Gao, Y.; Sun, C.; Yu, C.; Zhu, J. J.
    Am. Chem. Soc. 2013, 135, 468. b) Clot, E.; Besora, M.; Baseras, F.; Megret, C.;
    Einstein, O.; Oelckers, B.; Perutz, R. N. Chem. Commun. 2003, 490. c) M. E.
    Evans, C. L. Burke, S. Yaihuathes, E. Clot, O. Eisenstein, W. D. Jones, J. Am.
    Chem. Soc. 2009, 131, 13464.
    29. For gold-carbenes generated from the decomposition of α-diazo esters, see
    selected examples: a) Fructos, M. R.; Belderrain, T. R.; de Fremont, P.; Scott, N.
    M.; Nolan, S. P.; Diaz-Requejo, M. M.; Perez, P. J. J. Am. Chem. Soc. 2004, 126,
    10846. b) Fructos, M. R.; Belderrain, T. R.; Nicasio, M. C.; Nolan, S. P.; Kaur,
    H.; Dıaz-Requejo, M. M.; Perez, P. J. Angew. Chem. Int. Ed. 2005, 44, 5284. c)
    372
    Yu, Z.; Ma, B.; Chen, M.; Wu, H.-H.; Liu, L.; Zhang, J. J. Am. Chem. Soc. 2014,
    136, 6904. d) Barluenga, J.; Lonzi, G.; Tomas, M.; Lopez, L. A. Chem. Eur. J.
    2013, 19, 1573. e) Zhang, D.; Xu, G.; Ding, D.; Zhu, C.; Li, J.; Sun, J. Angew.
    Chem. Int. Ed. 2014, 53, 11070. f) Lonzi, G.; Lopez, L. A. Adv. Synth. Catal.
    2013, 355, 1948. g) Pagar, V. V.; Jadhav, A. M.; Liu, R.-S. J. Am. Chem. Soc.
    2011, 133, 20728. h) Jadhav, A. M.; Pagar, V. V.; Liu, R.-S. Angew. Chem. Int.
    Ed. 2012, 51, 11809. i) Pagar, V. V.; Liu, R.-S. Angew. Chem. Int. Ed. 2015, 54,
    4923.
    30. Reviews for ynamides and allenynamides, see: a) Wang, X.-N.; Yeom, H.-S.;
    Fang, L.-C.; He, S.; Ma, Z.-X.; Kedrowski, B. L.; Hsung, R. P. Acc. Chem. Res.
    2014, 47, 560. b) DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.;
    Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064. c) Evano, G.; Coste, A.;
    Jouvin, K. Angew. Chem. Int. Ed. 2010, 49, 2840. d) Evano, G.; Theunissen, C.;
    Lecomte, M. Aldrichimica Acta 2015, 48, 59. e) Lu, T.; Lu, Z.; Ma, Z.-X.; Zhang,
    Y.; Hsung, R. P. Chem. Rev. 2013, 113, 4862.
    31. For natural products containing 1-aminoindane cores, see a) Binda, C.; Hubalek,
    F.; Li, M.; Sterling, J.; Edmondson, D. E.; Mattevi, A. J. Med. Chem. 2005, 48,
    8148. b) Rascol, O.; Brooks, J. D.; Melamed, E.; Stocchi, F.; Tolosa E. Lancet
    2005, 365, 947. c) Binda, C.; Hubalek, F.; Li, M.; Sterling, J.; Edmondson, D. E.;
    Mattevi; A. J. Med. Chem. 2005, 48, 8148. d) Tian, S.; Zi, W.; Ma, D. Angew.
    Chem. Int. Ed. 2012, 51, 10141.
    4 References:
    1. a) P. M. Dewick, Medicinal Natural Products: A Biosynthetic Approach, John
    Wiley & Sons Inc., Chichester, 2009. b) D. H. R. Barton, K. Nakanishi, O.
    MethCohn and J. W. Kelly, Comprehensive Natural Products Chemistry,
    Pergamon Press, Oxford, 1999. c) Kochanowska-Karamyan A. J.; Hamann, M. T.
    Chem. Rev. 2010, 110, 4489. d) O’Connor S. E.; Maresh, J. J. Nat. Prod. Rep.
    2006, 23, 532.
    2. a) Bradfield, C. A.; Bjeldanes, L. F. J. Toxicol. Environ. Health 1987, 21, 311. b)
    Dashwood, R. H.; Uyetake, L.; Fong, A. T.; Hendricks, J. D.; Bailey, G. S. Food
    Chem. Toxicol. 1987, 27, 385.
    3. Zeligs, M. A. J. Med. Food. 1998, 1, 67.
    4. a) Pindur U.; Adam, R. J. Heterocycl. Chem. 1988, 25, 1. b) G. W. Gribble, J.
    Chem. Soc., Perkin Trans. 1, 2000, 1045. c) G. R.; Humphrey, J. T.; Kuethe,
    Chem. Rev., 2006, 106, 2875.
    5. a) Cacchi , S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873. b) Bandini M.;
    Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48, 9608. c) Patil S.; Patil, R. Curr.
    Org. Synth, 2007, 4, 201. c) Bandini, M.; Melloni, A.; Tommasi S.;
    Umani-Ronchi, A. Synlett, 2005, 1199.
    6. a) Muthusamy, S.; Gunanathan, C.; Babu, S. A.; Suresh E.; Dastidar, P. Chem.
    Commun. 2002, 824. b) Gibe R.; Kerr, M. A. J. Org. Chem. 2002, 67, 6247. c)
    Muthusamy S.; Gnanaprakasam, B. Tetrahedron Lett. 2008, 49, 475. d) Zhu,
    S.-F.; Zhou, Q.-L. Natl. Sci. Rev. 2014, 1, 580. e) DeAngelis, A.; Shurtleff, V.
    W.; Dmitrenko O.; Fox, J. M. J. Am. Chem. Soc. 2011, 133, 1650. f) Goto, T.;
    Natori, Y.; Takeda, K.; Nambu H.; Hashimoto, S. Tetrahedron: Asymmetry,
    2011, 22, 907.
    7. a) Yadav, J. S.; Reddy B. V. S.; Satheesh, G. Tetrahedron Lett. 2003, 44, 8331. b)
    Zhang, X.-J.; Liu S.-P.; Yan, M.; Chin. J. Chem. 2008, 26, 716. c) Johansen, M.
    B.; Kerr, M. A. Org. Lett. 2010, 12, 4956. d) Cai, Y.; Zhu, S.-F.; Wang G.-P.;
    Zhou, Q.-L. Adv. Synth. Catal. 2011, 353, 2939.
    8. a)Yadav, J. S.; Reddy, B. V. S.; Murthy, Ch. V. S. R.; Mahesh Kumar, G.;
    Madan, Ch. Synthesis 2001, 783. b) Babu, G.; Sridhar, N.; Perumal, P. T. Synth.
    Commun. 2000, 30, 1609. c) Bandgar, B. P.; Shaikh, K. A. Tetrahedron Lett.
    527
    2003, 44, 1959. d) Mo, L.-P.; Ma, Z.-C.; Zhang, Z.-H. Synth. Commun. 2005, 35,
    1997.
    9. a) Singh, P. R.; Singh, D. U.; Samant, S. D. Synth. Commun. 2005, 35, 2133. b)
    Li, W.-J.; Lin, X.-F.; Wang, J.; Li, G.-L.; Wang, Y.-G. Synth. Commun. 2005, 35,
    2765. c) Li, J.-T.; Dai, H.-G.; Xu, W.-Z.; Li, T.-S. Ultrason. Sonochem. 2006, 13,
    24. d) Raju, B. C.; Rao, J. M. Ind. J. Chem. 2008, 623. e) Nagarajan, R.; Perumal,
    P. T. Chem. Lett. 2004, 3, 288.
    10. For a book on carbene chemistry: R. A. Moss and M. P. Doyle, Contemporary
    Carbene Chemistry, John Wiley & Sons, 2013.
    11. For selected reviews on C–H bond insertion by metal carbenoids: a) Doyle M. P.;
    Forbes, D. C. Chem. Rev. 1998, 98, 911. b) Davies H. M. L.; Antoulinakis, E. G.
    J. Organomet. Chem. 2001, 47, 617. c) Davies, H. M. L.; Beckwith, R. E. J.
    Chem. Rev. 2003, 103, 2861. d) Davies, H. M. L; Manning, J. R. Nature
    2008, 451, 417. e) Doyle, M. P.; Duffy, R.; Ratnikov M.; Zhou, L. Chem. Rev.
    2010, 110, 704. f) Slattery, C. N.; Ford A.; Maguire, A. R. Tetrahedron
    2010, 66, 6681. g) Doyle, M. P.; Ratnikov M.; Liu, Y. Org. Biomol. Chem.
    2011, 9, 4007. h) Davies, H. M. L.; Morton, D. Chem. Soc. Rev. 2011, 40, 1857.
    i) Gillingham, D.; Fei, N. Chem. Soc. Rev. 2013, 42, 4918.
    12. Chan, W.-W.; Yeung, S. –H.; Zhou, Z.; Chan, A. S. C.; Yu W. -Y. Org. Lett.
    2010, 12, 604.
    13. For selected examples of C3-selective alkylations of indoles, see: a) Hong, L.;
    Wang, L.; Chen, C.; Zhang, B.; Wang, R. AdV. Synth. Catal. 2009, 351, 772. b)
    Rueping, M.; Nachtsheim, B. J.; Moreth, S. A.; Bolte, M. Angew. Chem., Int. Ed.
    2008, 47, 593. c) Itoh, J.; Fuchibe, K.; Akiyama, T. Angew. Chem., Int. Ed. 2008,
    47, 4061. d) Dong, H.-M.; Lu, H.-H.; Lu, L.-Q.; Chen, C.-B.; Xiao, W.-J. Adv.
    Synth. Catal. 2007, 349, 1597. e) Chen, W.; Du, W.; Yue, L.; Li, R.; Wu, Y.;
    Ding, L.-S.; Chen, Y.-C. Org. Biomol. Chem. 2007, 5, 816. f) Blay, G.;
    Ferna´ndez, I.; Pedro, J. R.; Vila, C. Org. Lett. 2007, 9, 2601. g) Yang, H.; Hong,
    Y.-T.; Kim, S. Org. Lett. 2007, 9, 2281. h) Bartoli, G.; Bosco, M.; Carlone, A.;
    Pesciaioli, F.; Sambri, L.; Melchiorre, P. Org. Lett. 2007, 9, 1403.
    14. Li, D.; Wu, T.; Liang, K.; Xia, C. Org. Lett. 2016, 18, 2228.
    15. Bayindirab, S.; Saracoglu N. RSC Adv. 2016, 6, 72959.
    16. Auvil, T. J.; So, S. S.; Mattson, A. E. Angew. Chem. Int. Ed. 2013, 52, 11317.
    528
    17. Xiang, J.; Wang, J.; Wang, M.; Meng, X.; Wu, A. Org. Biomol. Chem. 2015, 13,
    4240.
    18. Li, M.; Guo, X.; Jin, W.; Zheng, Q.; Liu, S.; Hu, W. Chem. Commun. 2016, 52,
    2736.
    19. Rh: a) Lindsay, V. N. G.; Fiset, D.; Gritsch, P. J.; Azzi, S.; Charette, A. B. J. Am.
    Chem. Soc. 2013, 135, 1463. b) Davis, H. M. L.; Lee, G. H. Org. Lett. 2004, 13,
    2117. c) Edwards, A.; Rubin, M. Tetrahedron 2015, 71, 3237. d) Denton, J. R.;
    Cheng, K.; Davies, H. M. L. Chem. Commun. 2008, 1238. e) Adly, F. G.;
    Gardniner, M. G.; Ghanem, A. Chem. Eur. J. 2016, 22, 3447. Cu: f) Swenson, A.
    K.; Higgins, K. E.; Brewer, M. G.; Brennessel, W. W.; Coleman, M. G. Org.
    Biomol. Chem. 2012, 10, 7483. g) Thomas, T. J.; Merritt, B. A.; Lemma B. E.;
    Mckoy, A. M.; Nguyen, T. N; Swenson, A. K.; Mills, J. L.; Coleman, M. G. Org.
    Biomol. Chem. 2016, 14, 1742. Ag: h) Briones, J. F.; Davis, H. M. L. Org. Lett.
    2011, 13, 3984. Co: i) Cui, X.; Xu, X.; Lu, H.; Zhu, S.; Wojtas, L.; Zhang, X. P.
    J. Am. Chem. Soc. 2011, 133, 3304. Ir: j) Uehara, M.; Suematsu, H.; Yasutomi,
    Y.; Katsuki, T. J. Am. Chem. Soc. 2011, 133, 170. Au: k) Briones, J. F.; Davis, H.
    M. L. J. Am. Chem. Soc., 2012, 134, 11916.
    20. a) Comprehensive reviews on -diazocarbonyl compounds, see: Ye, T.;
    McKervey, M. A. Chem. Rev. 1994, 94, 1091. b) Padwa A.; Austin, D. J. Angew.
    Chem., Int. Ed. 1994, 33, 1797. c) Padwa A.; Weingarten, M. D. Chem. Rev.
    1996, 96, 223. d) Doyle,; McKervey M. A.; Ye, T. in Modern Catalytic Methods
    for Organic Synthesis with Diazo Compounds, Wiley, New York, 1998. e) Doyle
    M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911. f) Padwa, A. J. Organomet.
    Chem. 2001, 3, 617. g) Hodgson, D. M.; Pierard, F. Y. T. M.; Stupple, P. A.
    Chem. Soc. Rev. 2001, 30, 50. h) Davies H. M. L.; Beckwith, R. E. J. Chem. Rev.
    2003, 103, 2861.
    21. a) Maier, T. C.; Fu, G. C. Catalytic Enantioselective O-H Insertion Reactions. J.
    Am. Chem. Soc. 2006, 128, 4594. b) Chen, C.; Zhu, S.-F.; Liu, B.; Wang, L.-X.;
    Zhou, Q.-L. Highly Enantioselective Insertion of Carbenoids into O-H Bonds of
    Phenols: J. Am. Chem. Soc. 2007, 129, 12616. c) Lee, E. C.; Fu, G. C.
    Copper-Catalyzed Asymmetric N-H Insertion Reactions: Couplings of Diazo
    Compounds with Carbamates to Generate R-Amino Acids. J. Am. Chem. Soc.
    2007, 129, 12066. d) Zhu, S.-F.; Cai, Y.; Mao, H.-X.; Xie, J.-H.; Zhou, Q.-L.
    529
    Enantioselective Iron-Catalysed O-H Bond Insertions. Nat. Chem. 2010, 2, 5461.
    e) Zhu, S.-F.; Song, X.-G.; Li, Y.; Cai, Y.; Zhou, Q.-L. Enantioselective
    Copper-Catalyzed Intramolecular O-H Insertion: An Efficient Approach to
    Chiral 2-Carboxy Cyclic Ethers. J. Am. Chem. Soc. 2010, 132, 16374. f)
    Zhu, S.-F.; Zhou, Q.-L. Acc. Chem. Res. 2012, 45, 1365.
    22. a) Doyle, M. P.; In Comprehensive Organometallic Chemistry II, E. W. Abel, F.
    G. A. Stone, Ed.; Pergamon: Oxford UK, vol 12, 387. b) Doyle, M. P.; McKervy,
    M. A.; Ye, T.; Modern Catalytic Method for Organic Synthesis with Diazo
    Compounds: From Cyclopropanes to Ylides; Wiley; New York, 1998. c) Davies,
    H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. d) Zhang, Z.; Wang, J.
    Tetrahedron 2008, 64, 6577. e) Liu, L.; Zhang, J. Chem. Soc. Rev. 2016, 45, 506.
    f) Nolan, S. P. Acc. Chem. Res. 2011, 44, 91. g) Ford, A.; Miel, H.; Ring, A.;
    Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981.
    23. Copper-catalyzed Reaction of diazo compound: a) Díaz-Requejo M. M.;,
    Mairena, M. A.; Belderrain, T. R.; Nicasio, M. C.; Trofimenko, S.; Pérez, P. J.
    Chem. Commun. 2001, 1804. b) Park, E. J.; Kim, S. H.; Chang, S. J. Am. Chem.
    Soc. 2008, 130, 17268. c) Harrar, K.; Reiser, O. Chem. Commun. 2012, 48, 3457.
    d) Tayama, E.; Yanaki, T.; Iwamoto, H.; Hasegawa, E. Eur. J. Org. Chem. 2010
    , 35, 6719. e) Peng, C.; Cheng, J.; Wang, J. Adv. Synth. Catal. 2008, 350, 2359.
    24. Rhodium-catalyzed reaction of diazo compound: a) Yong, K.; Salim, M.; Capret
    -ta, A. J. Org. Chem. 1998, 63, 9828. b) Lawlor, M. D.; Lee, T. W.; Danheiser,
    R. L. J. Org. Chem. 2000, 65, 4375, Cyclopropanation c) Wang, H.
    B.; Guptill, D. M.; Varela-Alvarez, A.; Musaev, D. G.; Davies, H. M. L. Chem.
    Sci. 2013, 4, 2844. d) Davies, H. M. L.; Lee, G. H. Org. Lett. 2004, 6, 1233. e)
    Honey, M. A.; Blake, A. J.; Campbell, I. B.; Judkins, B. D.; Moody, C. J.
    Tetrahedron 2009, 65, 8995. f) Zhang, X.; Huang, H.; Guo, X.; Guan, X.; Yang,
    L.; Hu, W. Angew. Chem., Int. Ed. 2008, 47, 6647. g) Qiu, H.; Li, M.; Jiang,
    L.-Q.; Lv, F.-P.; Zan, L.; Zhai, C.-W.; Doyle, M. P.; Hu, W.-H. Nat. Chem. 2012,
    4, 733. h) Lian, Y.; Davies, H. M. L. Org. Lett. 2012, 14, 1934.
    25. Fe: a) Zhu, S.-F.; Cai, Y.; Mao, H.-X.; Xie, J.-H.; Zhou, Q.-L. Nat. Chem. 2010,
    2, 546. b) Nicolas, I.; Roisnel, T.; Maux, P. L.; Simonneaux, G. Tetrahedr
    -on Lett. 2009, 50, 5149. c) Gao, X.; Wu, B.; Huang, W.-X.; Chen, M.-W.; Zhou
    Y.-G. Angew. Chem. Int. Ed. 2015, 54, 11956 Ru: d) Chanthamath, S.; Phomkeo
    530
    -na, K.; Shibatomi, K.; Iwasa, S. Chem. Commun. 2012, 48, 7750. e) Chanthamat
    -h, S.; Takaki, S.; Shibatomi, K.; Iwasa, S. Angew. Chem., Int. Ed. 2013, 52,
    5818, Ir (III): f) Anding, B. J.; Ellern, A.; Woo, L. K. Organometallics 2012, 31,
    3628. g) Uehara, M.; Suematsu, H.; Yasutomi, Y.; Katsuki, T. J. Am. Chem.
    Soc. 2011, 133, 170.
    26. Selected examples: a) Lian, Y.; Davies, H. M. L. Org. Lett. 2010, 12, 924. b)
    Yadav, J. S.; Reddy, B. V. S.; Satheesh, G. Tetrahedron Lett. 2003, 44, 8331. c)
    Gibe, R.; Kerr, M. A. J. Org. Chem. 2002, 67, 6247. d) Muthusamy, S.;
    Gunanathan, C.; Babu, S. A.; Suresh, E.; Dastidar, P. Chem. Commun. 2002, 824.
    e) Johansen, M. B.; Kerr, M. A. Org. Lett. 2010, 12, 4956. For a useful review,
    see: f) Davies, H. M. L.; Hedley, S. J. Chem. Soc. Rev. 2007, 36, 1109.
    27. a) Zhang, M.; Huang, X.; Shen, L.; Qin, Y. J. Am. Chem. Soc. 2009, 131, 6013. b)
    Shen, L.; Zhang, M.; Qin, Y. Angew. Chem., Int. Ed. 2008, 47, 3618. c) He, B.;
    Song, H.; Qin, Y. J. Org. Chem. 2009, 74, 298. d) Yang, J.; Wu, H.; Shen, L.;
    Qin, Y. J. Am. Chem. Soc. 2007, 129, 13794. Indole alkaloids with BIM as core
    structure: e) Jella, R. R.; Nagarajan, R. Tetrahedron 2013, 69, 10249. f) Abe, T.;
    Nakamura, S.; Yanada, R.; Choshi, T. Hibino, S.; Ishikura, M. Org. Lett. 2013,
    15, 3622.
    28. Selected Review see: a) Shiri, M.; Zolfigol, M. A.; Kruger, H. G.; Tanbakouchia
    -n, Z. Chem. Rev. 2010, 110, 2250. b) Shiri, M. Chem. Rev. 2012, 112, 3508.
    Selected Examples: c) X.; Guo, S.; Pan, J.; Liu, Li, Z. J. Org. Chem. 2009, 74,
    8848. d) Grosso, C.; Cardoso, A. L.; Lemos, A.; Varela, J.; Rodrigues, M. J.;
    Custodio, L.; Barreira, T. L.; PinhoMelo M.V.D. European J. Med. Chem. 2015,
    93, 9. e) Lucarini, S.; Mari, M.; Piersanti, G.; Spadoni, G. RSC Adv. 2013, 3,
    19135.
    29. Construction of BIMs via reaction of indole with terminal alkynes: a) Kitamura,
    T. Eur. J. Org. Chem. 2009, 1111. b) Barluenga, J.; Fernández, A.; Rodríguez, F.;
    Fañanás, F. J. J. Organomet. Chem. 2009, 694, 546. c) Ferrer, C.; Amijs, C. H.
    M.; Echavarren, A. M. Chem. Eur. J. 2007, 13, 1358. d) Yadav, J. S.; Reddy, B.
    V. S.; Padmavani, B.; Gupta, M. K. Tetrahedron Lett. 2004, 45, 7577.
    30. x-ray crystallographic data of compounds 4-3j, and 4-3p were deposited in
    Cambridge Crystallographic Data Center: 4-3j, CCDC 1501651; 4-3p’ CCDC
    1501652.
    531
    31. For gold-carbenes generated from the decomposition of α-diazo esters, see
    selected examples: a) Fructos, M. R.; Belderrain, T. R.; de Fremont, P.; Scott, N.
    M.; Nolan, S. P.; Diaz-Requejo, M. M.; Perez, P. J. J. Am. Chem. Soc. 2004, 126,
    10846. b) Fructos, M. R.; Belderrain, T. R.; Nicasio, M. C.; Nolan, S. P.; Kaur,
    H.; Dıaz-Requejo, M. M.; Perez, P. J. Angew. Chem. Int. Ed. 2005, 44, 5284. c)
    Yu, Z.; Ma, B.; Chen, M.; Wu, H.-H.; Liu, L.; Zhang, J. J. Am. Chem. Soc. 2014,
    136, 6904. d) Barluenga, J.; Lonzi, G.; Tomas, M.; Lopez, L. A. Chem. Eur. J.
    2013, 19, 1573. e) Zhang, D.; Xu, G.; Ding, D.; Zhu, C.; Li, J.; Sun, J. Angew.
    Chem. Int. Ed. 2014, 53, 11070. f) Lonzi, G.; Lopez, L. A. Adv. Synth. Catal.
    2013, 355, 1948. g) Pagar, V. V.; Jadhav, A. M.; Liu, R.-S. J. Am. Chem. Soc.
    2011, 133, 20728. h) Jadhav, A. M.; Pagar, V. V.; Liu, R.-S. Angew. Chem. Int.
    Ed. 2012, 51, 11809. i) Pagar, V. V.; Liu, R.-S. Angew. Chem. Int. Ed. 2015, 54,
    4923.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE