簡易檢索 / 詳目顯示

研究生: 趙寓安
Chao, Yu-An
論文名稱: Oxidation Behavior of ZrN Thin Films in Vacuum and Nitrogen Enviroments
氮化鋯薄膜於真空及氮氣環境之氧化行為研究
指導教授: 喻冀平
Yu, Ge-Ping
黃嘉宏
Huang, Jia-Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 86
中文關鍵詞: 氮化鋯熱處理氧化行為
外文關鍵詞: ZrN, annealing, oxidation behavior
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中選擇熱處理的氣氛及溫度作為實驗設計變數,以探討氮化鋯薄膜在不同氣氛下的氧化作用。本研究係將氮化鋯薄膜鍍著在矽基材上,接著在真空及流動氮氣中分別進行四種不同溫度持溫一小時的熱處理,同時用氧偵測器監測系統的臨場氧分壓。利用置入試片與未置入試片時氧分壓的不同,計算出氧在氮化鋯薄膜中的溶解度,其結果顯示氧溶解入氮化鋯為一放熱反應,並由熱力學及動力學的角度計算討論氧化作用。從實驗結果發現,氮化鋯薄膜在真空及流動氮氣中熱處理後,不論在成分、結構及性質上皆有顯著的不同。氮化鋯薄膜在流動氮氣中熱處理後完全氧化,但經真空熱處理到了攝氏1000度以上才出現明顯的二氧化鋯相。在真空熱處理中,氧分壓隨著溫度上升從10-15上升到10-8大氣壓,可能是影響氧化的主要因素。在真空和氮氣熱處理中所形成的表面氧化層可能不同,因而導致不同的氧化行為。在氮氣中熱處理的試片表面上發現有空泡的出現,空泡的形成與破裂使得系統中的氧氣有更多的機會接觸到尚未氧化的氮化鋯,更加快了氧化反應。為了避免空泡的形成並得到較平坦的表面,氮化鋯在真空中熱處理是一個可行的方法。


    The objective of this study is to understand the difference of the behaviors of ZrN thin film oxidation in different atmospheres. The annealing atmosphere and temperature were chosen to be the designate variables. In this study, ZrN thin film was deposited on Si substrate, and the samples were annealed in vacuum and flowing nitrogen respectively at four different temperatures for one hour. The oxygen partial pressure was monitored by a zirconia oxygen sensor during annealing. The solubility of oxygen in ZrN was calculated by comparing the difference of measured oxygen partial pressure between annealing with and without specimen. The dissolution of oxygen in ZrN is an exothermic reaction. The oxidation behavior was examined from thermodynamic and kinetic perspectives. Results indicated that the composition, structure and properties of the specimens annealed in vacuum and flowing nitrogen were completely different. All ZrN thin films were oxidized under annealing in flowing nitrogen. On the other hand, the specimens in vacuum annealing revealed substantial formation of ZrO2 at 1000°C and above. For vacuum annealing, it is observed that the oxygen partial pressure in the system, ranging from 10-15 to 10-8 atm, significantly varied with temperature from 800 to 1100 °C, which is the main factor leading to oxidation. The surface oxide layer formed in vacuum annealing may be different from that in nitrogen gas, and thereby affecting oxidation behavior. Blisters were observed on the surface for the samples annealed in nitrogen. Once the blisters formed, more oxygen could penetrate the thin film through the cracked blisters and the ZrN film would be oxidized rapidly. To avoid blister formation and maintain a smoother surface, heat treatment of ZrN in vacuum was a feasible method.

    致謝 I 摘要 III Abstract IV Content V List of Figures VII List of Tables IX Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Deposition Method (HCD-IP) 3 2.2 Characteristics of ZrN and ZrO2 4 2.2.1 Characteristics of ZrN 4 2.2.2 Characteristics of ZrO2 5 2.3 Heat Treatment 5 2.4 ZrN Annealed in Different Atmospheres 7 Chapter 3 Experimental Details 12 3.1 Specimen Preparation and Deposition Process 12 3.2 Heat Treatment 13 3.3 Characterization Methods 16 3.3.1 X-ray Diffraction and Glancing Incidence X-ray Diffraction (XRD and GIXRD) 16 3.3.2 X-ray Photoelectron Spectroscopy (XPS) 17 3.3.3 Rutherford Backscattering Spectroscopy (RBS) 18 3.3.4 Auger Electron Spectroscopy (AES) 19 3.3.5 Field-Emission Gun Scanning Electron Microscopy (FEG-SEM) 19 3.4 Properties Measurement 19 3.4.1 Hardness and Young’s Modulus 19 3.4.2 Residual Stress (Optical Method) 20 3.4.3 Surface Roughness 23 3.4.4 Electrical Resistivity 23 3.4.5 Color (L*a*b*) and Reflectance 23 Chapter 4 Experimental Results 25 4.1 Oxygen partial pressure 28 4.2 Composition 36 4.2.1 XPS 36 4.2.2 RBS 36 4.3 Microstructure 38 4.3.1 SEM 38 4.3.2 AES 43 4.4 Structure 46 4.4.1 θ/2θ XRD 46 4.4.2 GIXRD 51 4.5 Properties 53 4.5.1 Residual Stress 53 4.5.2 Hardness 53 4.5.3 Color and Reflectance 54 Chapter 5 Discussion 58 5.1 The Dissolution of Oxygen 58 5.2 The Formation of Oxygen Layer 61 5.3 The Surface Difference between V-series and N-series 68 5.4 The Difference of Vacuum Annealing 72 Chapter 6 Conclusions 74 References 75 Appendix A AES depth profiles 80 Appendix B Electrical Resistivity 81 Appendix C Results of AFM 82

    [1] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, Surf. Coat. Technol., 41 (1990) 191.
    [2] H. Holleck, J. Vac. Sci. Technol., A 4 (1986) 2661.
    [3] W.D. Sproul, Thin Solid Films, 107 (1983) 141.
    [4] B. Navinsek, P. Panjan, I. Milosev, Surf. Coat. Technol., 97 (1997) 182.
    [5] J. S. Jeng, S. H. Wang, J. S. Chen, J. Vac. Sci. Technol., A25 (2007) 651.
    [6] Y. C. Chieh, W. Z. Lo, F. H. Lu, Surf. Coat. Technol., 200 (2006)3336.
    [7] W. Ensinger, A. Schroer and G. K. Wolf, Nucl. Instrum. Meth. Phys. Res. B 80/81 (1993) 445.
    [8] R. A. Dugdale, J. of Mater. Sci., 1 (1996) 160.
    [9] J. H. Huang, K. H. Chang, G. P. Yu, Surf. Coat. Technol. 201 (2007) 6404.
    [10] S. H. Chiu, “Synthesis and Characterization of Nano-crystalline TiNxOy Thin Films by Unbalanced Magnetron Sputtering System (UBMS)”, Master Thesis, National Tsing Hua University, Taiwan, R.O.C., 2006.
    [11] K.C. Lan, Study of Nano-crystalline Zr(N,O) Thin Films on Si Substrate by Ion-plating, Master Thesis, National Tsing Hua University, Taiwan, R.O.C., 2007.
    [12] Z.E. Tsai, Effect of Oxygen Flow Rate on the Structure and Properties of Nanocrystalline Zr(N,O) Thin Film, Master Thesis, National Tsing Hua University, Taiwan, R.O.C., 2005.
    [13] W.J. Chou, Processing and Properties of Metal Nitride Thin Films Deposited by PVD Methods, Ph. D Thesis, National Tsing Hua University, Taiwan, R.O.C., 2003.
    [14] H. M. Tung, Effect of Bias and heat treatment on the microstructure and properties of ZrN film deposited by filter cathodic arc ion-plating, Master Thesis, National Tsing Hua University, Taiwan, R.O.C., 2004.
    [15] I. Milosev, H. H. Strehblow, M. Gaberscek, B. Navinsek, Surf. and Interf. Anal., 24 (1996) 448.
    [16] W. J. Chou, G.. P. Yu, J. H. Huang, Suf. Coat. Technol., 149 (2002) 7.
    [17] F. Cernuschi, S. Ahmaniemi, P. Vuoristo, T. Mantyla, J. Eur. Ceram. Soc., 24 (2004) 2657.
    [18] S. Venkataraj, O. Kappertz, H. Weis, R. Drese, R.Jeyavel, M. Wutting, J Appl. Phys., 92 (2002) 3599.
    [19] S. Venkataraj, O. Kappertz, C. Liesch, R. Detemple, R. Jayavel, M. Wutting, Vacuum, 75 (2004) 7.
    [20] X.J. Chen, K.A. Khor, S.H. Chan, L.G. Yu, Mater. Sci. Eng., 335 (2002) 246.
    [21] E. Ryshkewitzand D. W. Richardson, Oxide Ceramic, Physical Chemistry and Technology (General Ceramics, Haskell, NJ, 1985).
    [22] Zirconia’88 Advances in Zirconia Science and Technology, edited by S. Meriani (Elsevier, NY, 1989).
    [23] A. H. Heuer, M. Ruhle, “Phase Transformation in ZrO2-Containing Ceramics: I, The Instability of c-ZrO2 and the Resulting Diffusion-Controlled Reactions”, 1984, The American Ceramic Society.
    [24] D. Serverin, K. Sarakinos, O. Kappertz, A. Pflug and M. Wuttig, J. Aool. Phys. 103 (2008) 083306.
    [25] S. Schmauder, H. Schubert, J. Am. Ceram. Sco., 69 (1986) 534.
    [26] T. Sato, S. Ohtaki, M. Shimada, J. Mater. Sci., 20 (1985) 1466.
    [27] R.C. Garvie, R.H.J. Hannink, R.T. Pascoe, Nature (London), 258 (1975) 703.
    [28] S. Block, J.A.H. Dajornada, G.J. Piermarini, J. Am. Ceram. Soc., 68 (1985) 497.
    [29] E.D. Whitney, J. Electrochem. Soc., 112 (1965) 91.
    [30] J.P. Abriata, R. Versaci, J. Garces, Bull. Alloy Phase Diagrams, 7 (1986) 116.
    [31] W. Qin, C. Nam, H. L. Li, J. A. Szpunar, Acta Materialia 55 (2007) 1695.
    [32] W. Qin, Z. H. Chen, J. Alloys Compd., 322 (2001) 286.
    [33] L. Cunha, F. Vaz, C. Moura, L. Rebouta, P. Carvalho, E. Alves, A. Cavaleiro, Ph. Goudeau, J.P. Riviere, Surf. Coat. Technol. 200 (2006) 2917.
    [34] C. S. Kang, H. J. Cho, Y. H. Kim, C. Y. Kang, S. J. Rhee, C. H. Choi, IEEE Trans. Electron Devices. 51 no.2 (2004) 220.
    [35] L.Q. Zhu, Q. Fang, G. He, M. Kiu, and L. D. Zhang, Nanotechnology 16 (2005) 2865-2869.
    [36] S. Venkataraj, O. Kapperta, Ch. Liesch, R. Detemple, R. Jayavel and M. Wuttig, Vacuum 75 (2004) 7-16.
    [37] P. Panjan, B. Navinšek, A. Cvelbar, A. Zalar, I. Milošev, Thin Solid Films, 281-282 (1996) 298.
    [38] G. L.N. Reddy, J. V. Ramana, Sanjiv Kumar, S. Vikram Kumar, V.S. Raju, Appl. Surf. Sci., 253(2007) 7230.
    [39] Sebastiano Luridiana, Antonio Miotello, Thin Solid Films, 290-291 (1996) 289.
    [40] F. H. Lu, W. Z. Lo, J. Vac. Sci. Technol., A 22 (2004) 2071.
    [41] Y. Y. Zheng, “Growth of TiN and ZrO2 Thin Films Using Thin Film Templates”, 2008, Master Thesis, National Tsing Hua University, R.O.C.
    [42] K. J. Yu, “Effect of Heat Treatment under Controlled Atmosphere on the Properties of TiN Film Deposited by Unbalanced Magnetron Sputtering”, 2003, Master Thesis, National Tsing Hua University, R.O.C.
    [43] C. Y. Yeh, “Effect of Heat Treatment under Controlled Atmosphere on the Properties of ZrN Film Deposited by HCD ion plate”, 2008, Master Thesis, National Tsing Hua University, R.O.C.
    [44] I.Milošev, H.-H. Strehblow, B.Navinšek, Thin Solid Films, 303 (1997) 246.
    [45] H. N. Al-Shareef, X. Chen, D.J. Lichtenwalner, A.I. Kingon , Thin Solid films, 280 (1996) 265.
    [46] L. Pichon, A. Straboni, T. Girardeau and M. Drouet, J. Appl. Phys. 87 (2000) 925-932.
    [47] J. S. Jeng, J. S. Chen, App. Sur. Sci. 255 (2009) 8263.
    [48] JCPDS file 35-0753.
    [49] J.E. Hove, W.C. Riley, Modern Ceramics: Some Principles and Concepts, John Wiley & Sons, Inc., CA, 1965, pp.352.
    [50] L.E. Toth, Transition Metal Carbides and Nitrides, Academic press, New York, 1971, pp. 188.
    [51] J.H. Huang, K.W. Lau, G.P. Yu, Surf. Coat. Technol., 191 (2005) 17.
    [52] A.J. Perry, Vficlav Valvoda, David Rafaja, Thin Solid Films, 214 (1992) 169.
    [53] E. Torok, A.J. Perry, L. Chollet, W.D. Sproul, Thin Solid Films, 153 (1987) 37.
    [54] A.J. Perry, Thin Solid Films, 193 (1990) 463.
    [55] P. Jin, S. Maruno, Jpn. J. Appl. Phys., 30 (1991) 1463.
    [56] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schussler, Surf. Coat. Technol., 112 (1999) 108.
    [57] A. H. Heuer, M. Ruhle, “Phase Transformation in ZrO2-Containing Ceramics: I, The Instability of c-ZrO2 and the Resulting Diffusion-Controlled Reactions”, 1984, The American Ceramic Society.
    [58] S. Block, J.A.H. Dajornada, G.J. Piermarini, J. Am. Ceram. Soc., 68 (1985) 497.
    [59] E.D. Whitney, J. Electrochem. Soc., 112 (1965) 91.
    [60] W. J. Chou, C. H. Sun, G.. P. Yu, J. H. Huang, Mater. Chem. Phys., 82 (2003) 228.
    [61] W.J. Chou, Processing and Properties of Metal Nitride Thin Films Deposited by PVD Methods, Ph. D Thesis, National Tsing Hua University, Taiwan, R.O.C., 2003.
    [62] P. Scherrer, Gott. Nachr 2 (1918) 98.
    [63] L.V. Azaroff, M.J. Buerger, The Powder Method in X-Ray Crystallography, McGraw-Hill, New York, 1958, pp.233.
    [64] JCPDS file 89-7710.
    [65] JCPDS file 83-0944.
    [66] D. Briggs and M. P. Seah (eds), “Practical Surface Analysis by AES and XPS”, Wiley, Chichester (1983).
    [67] http:/www.cem.msu.edu/~cem924sg/XPSASFs.html.
    [68] W.C. Oliver, G.M. Pharr, J. Mater. Res., 7 (1992) 1564.
    [69] A.J. Perry, Thin Solid Films, 193 (1990) 463.
    [70] James F. Shackelford, CRC Materials Science and Engineering Handbook, 2nd ed., CRC.
    [71] G.G. Stoney, Proc. R. Soc. Lond, A 82 (1909) 17.
    [72] W. Zhang, Y.L. Yao, I.C. Noyan, J. Manuf. Sci. Eng., 126 (2004) 10.
    [73] American Society for Testing Materials, Symposium on Color, ASTM, hiladelphia, 1941, pp.3.
    [74] F. H. Lu, J. L. Lo, J. Eur. Ceram. Soc. 22 (2002) 1367.
    [75] T. H. Wu, Heat Treatment Induced Phase Separation and Phase Transformation of Zr(N,O) Thin Films Deposited by Ion-plating, Master Thesis, National Tsing Hua University, Taiwan, R.O.C., 2007.
    [76] D. A. Hardwick, Thin Solid Films 154, (1987) 109.
    [77] Recrystallization and grain growth in metals, P. Cotterill and P. R. Mould, pp. 324-325.
    [78] William D. Nix, Mechanical Properties of Thin Films, http://www.imechanica.org/node/530, (2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE