研究生: |
薛芳騏 Hsueh, Fang-Chi |
---|---|
論文名稱: |
高效率聚3-己基塞吩混摻小分子三成份系統太陽能電池之研究 Study on High Performance Ternary System Solar Cell of P3HT Blend with Small Molecules |
指導教授: |
陳壽安
Chen, Show-An |
口試委員: |
郭欽湊
華繼中 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 高效率太陽能電池 、聚3-己基噻吩 、小分子 、三成份系統 |
外文關鍵詞: | P3HT, small molecule, high performance solar cell, ternary blend |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究構想在於提升太陽能電池的元件效率,藉由活性層材料的選擇及活性層處理與元件製程改善以提升高分子太陽能電池元件效率。目前普遍達到高效率(PCE>12%)的高分子太陽能電池文獻所使用的高分子大多為價格昂貴的低能隙高分子(PTB7-Th、PBDB-T…),為了達到工業化低成本的目的,本研究選用價格相較低能隙高分子低廉許多的P3HT作為高分子太陽能電池的電子予體,並搭配不同非碳球小分子電子受體(Non-Fullerene Acceptor,NFA)來達到高效率目的。
本研究提出了使用結構相似的IDT-2BR和IDTBR的小分子和P3HT混摻形成三成份系統高分子太陽能電池,文獻上使用P3HT混摻IDT-2BR元件表現優點有高開環電壓(Voc)和高填充因子(FF),而P3HT混摻IDTBR在文獻上的元件表現優點則為高短路電流(JSC),基於以上原因結合兩者優點將P3HT、IDT-2BR及IDTBR混摻製作高分子太陽能電池,P3HT分別與IDT-2BR和IDTBR混摻的元件效率皆為6.3%,P3HT、IDT-2BR及IDTBR混摻三成份系統效率提升至7.67%,在活性層經過添加劑 1-napthalenethiol (Sh-na)處理後,使活性層分子排列增加、激子解離效率提升和電子遷移率提升,元件效率從7.67%增加至8.80%,此為目前P3HT高分子太陽能電池最高效率。
This study proposes a non-fullerene acceptor (NFA)ternary system based on P3HT and the two NFAs: IDT-2BR and IDTBR. The advantages of IDT-2BR are high open circuit voltage(Voc) and high fill factor, while that of IDTBR is high short circuit current(JSC). We combine these strong points of IDT-BR and IDTBR into the system and ternary system polymer solar cell (PSC) with P3HT, IDT-2BR and IDTBR. The device efficiency of P3HT:IDT-2BR and P3HT:IDTBR are the same 6.3%, but for the ternary system P3HT:IDT-2BR:IDTBR the efficiency is promoted to 7.67%. Then we add 1-napthalenethiol (Sh-na) additive to the active layer and the efficiency is further improved from 7.67% to 8.80%.The advantage of adding the additive SH-na are to adjust molecule arrangement in the amorphous region, promoting exciton dissociation and enhancing electron mobility.The 8.80% power conversion efficiency (PCE) of P3HT:IDT-2BR:IDTBR is the best performance in P3HT-based PSCs so far.
[1] C. J. Brabec, F. Padinger, J. C. Hummelen, R. A. J. Janssen, N. S. Sariciftci, Synth Metals. 1999, 102, 861
[2] S. E. Shaheen, R. Radspinner, N. Peyghambarian, G. E. Jabboura, Appl. Phys. Lett. 2001, 79, 2996
[3] C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 15
[4] H. Hoppe, N. S. Sariciftcia, J. Mater. Chem. 2006, 16, 45
[5] G. Li, V. Shrotriya, Y. Yao, Y. Yang, J. Appl. Phys. 2005, 98, 43704
[6] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 2006, 18, 789
[7] G. Li, R. Zhu, Y. Yang, Nat. Photonics 2012, 6, 153
[8] M. Knupfer, Appl. Phys. A 2003, 77, 623
[9] K. L. Shaklee, R. E. Nahory, Phys. Rev. Lett. 1970, 24, 942
[10] T. J. Savenije, J. M. Warman, A. Goossens, Chem. Phys. Lett. 1998, 287, 148
[11] J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, A. B. Holmes, Appl. Phys. Lett. 1996, 68, 3120
[12] M. Theander, A. Yartsev, D. Zigmantas, V. Sundström, W. Mammo, M. R. Andersson, O. Inganäs, Phy. Rev. B 2000, 61, 12957
[13] J.-L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 2004, 104, 4971
[14] P. Peumans, S. R. Forrest, Appl. Phys. Lett. 2001, 79, 126
[15] S. H. Liao, Y. L. Li, T. H. Jen, Y. S. Cheng, S. A. Chen, J. Am. Chem. Soc. 2012, 134, 14271
[16] A. e. Moliton, J.-M. Nunzi, Polym. Int. 2006, 55, 583
[17] K. M. Coakley, M. D. McGehee, Chem. Mater. 2004, 16, 4533
[18] H. Hoppe, N. S. Sariciftci, Adv. Polym. Sci. 2008, 214, 1
[19] C. W. Tang, Appl. Phys. Lett. 1986, 48, 183
[20] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789
[21] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617
[22] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat.
60
Mater. 2005, 4, 864
[23] X. Guo, M. Zhang, J. Tan, S. Zhang, L. Huo, W. Hu, Y. Li, J. Hou, Adv. Mater. 2012, 24, 6536
[24] A. J. Moulé, K. Meerholz, Adv. Mater. 2008, 20, 240
[25] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nat. Mater. 2007, 6, 497
[26] J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, A. J. Heeger, J. Am. Chem. Soc. 2008, 130, 3619
[27] C. Duan, F. Huang, Y. Cao, J. Mater. Chem. 2012, 22, 10416
[28] H. J. Son, B. Carsten, I. H. Jung, L. Yu, Energy Environ. Sci. 2012, 5, 8158
[29] H. Zhou, L. Yang, W. You, Macromolecules 2012, 45, 607
[30] S. Holliday, R. S. Ashraf, C. B. Nielsen, M. Kirkus, J. A. Röhr, C.-H. Tan, E. Collado-Fregoso, A.-C. Knall, J. R. Durrant, J. Nelson, I. McCulloch, J. Am. Chem. Soc. 2015, 137, 898
[31] Y. Wu, H. Bai, Z. Wang, P. Cheng, S. Zhu, Y. Wang, W. Mac, X. Zhan, Energy Environ. Sci 2015, 8, 3215
[32] S. Holliday, R. S. Ashraf, A. Wadsworth, D. Baran, S. A. Yousaf, Christian, Nielsen, C.-H. Tan, S. D. Dimitrov, Z. Shang, N. Gasparini, M. Alamoudi, F. d. r. Laquai, C. J. Brabec, A. Salleo, J. R. Durrant, I. McCulloch, Nat. Commun. 2016, 7, 11585
[33] D. Baran, R. S. Ashraf, D. A. Hanifi, M. Abdelsamie, N. Gasparini, J. A. Röhr, S. Holliday, A. Wadsworth, S. Lockett, M. Neophytou, C. J. M. Emmott, J. Nelson, C. J. Brabec, A. Amassian, A. Salleo, T. Kirchartz, J. R. Durrant, I. McCulloch, Nature Materials 2016, 16, 363
[34] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 374