簡易檢索 / 詳目顯示

研究生: 瑞 莎
Reesha Kakkadavath Vayalakkara
論文名稱: 氣體/光應答型複合奈米治療系統於抗癌之應用
NIR-Responsive Nanoparticle-Based Photo/Gas Combination Therapy for Cancer Treatment
指導教授: 邱信程
Chiu, Hsin-Cheng
口試委員: 黃郁棻
Huang, Yu-Feng
張建文
Chang, Chien-Wen
姜文軒
Chiang, Wen-Hsuan
黃汶嘉
Huang, Wen-Chia
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 159
中文關鍵詞: 奈米粒子光熱氣體療法
外文關鍵詞: nanopartcicles, photothermal, gas therapy
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要為開發具備標靶性的光應答奈米傳輸系統應用於癌症治療。本研究中分別製備了具有光應答效應的有機奈米傳輸系統與無機奈米傳輸系統,並搭配光動力治療(photodynamic therapy, PDT)、光熱治療(photothermal therapy, PTT)及氣體治療(O2 / NO gas therapy)等策略,於兩種不同的腫瘤模型中進行研究。
    由於外部光源的照射屬於非侵入式的治療策略,光應答奈米傳輸系統應用於癌症治療具備安全、療效好、效率高等優勢,光動力與光熱合併治療是癌症治療中常見的策略,然而腫瘤內的缺氧區與抗藥性使腫瘤無法根除仍是需要被克服的難題。為了克服此困境,本研究利用酯質分子二棕櫚酰磷脂酰膽鹼 (DPPC)、膽固醇 (Cholesterol)及具有酸鹼應答功能的N-Acetyl-Histidine modified D-α-tocopheryl poly(ethylene glycol) succinate (NAcHis-TPGS)作為材料並包覆能夠攜帶氧氣的Perfluorooctyl bromide (PFOB)液滴且搭載光熱藥物IR-780及光動力藥物mTHPC兩種藥物,製備出高分子脂質奈米粒子(PFOB@IMHNPs)。
    由於PFOB@IMHNPs在腫瘤區域的酸性環境下,會產生表面電性轉變,促使此奈米粒子能更有效且準確地將光熱藥物IR-780及光動力藥物mTHPC運送至癌細胞內。而此奈米粒子對於小鼠前列腺癌細胞TRAMP-C1的毒性來自於紅外線照射IR-780藥物所引的光熱效應及紅外線照射mTHPC藥物,與PFOB所攜帶的氧氣作用後所造成的光動力效應。在小鼠體外及體內的影像中可以看到此奈米粒子在腫瘤處確實有較好的累積表現及光熱效果,且能有效地抑制腫瘤生長。另外,於免疫組織化學染色的影像中,呈現在腫瘤區域有更多的氧氣浸潤且避免了缺氧區域的產生。綜上所述,PFOB@IMHNPs為一具備標靶及功能性奈米光熱/光動力治療傳輸系統於癌症上之應用相當具有潛力。
    於生理環境下的低溶解度、非特定位置的生物分布與高疏水性造成低擴散速率是一般化療藥物應用於癌症治療上無法有效抑制腫瘤生長的影響因素,而無機材料為主體的奈米粒子,因其可調控的光學性質、粒徑大小,以及水相中提高抗癌藥物的穩定性及分散性可克服此上述之困境,在癌症治療中搭配其他治療手段進行複合式的治療具有相當大的發展潛力。本研究中開發了搭載N, N′-Di-sec-butyl-N, N′-dinitroso-1,4-phenylenediamine (BNN6)藥物且可經由第二生物窗口紅外光(1000-1350 nm)激發的金複合量子點星狀奈米粒子(AuS@QDBNPEG NPs),在1064 nm紅外光雷射的照射下,此能量將經由表面電漿共振效應使BNN6分解產生NO分子並使金奈米粒子產生高熱對小鼠乳癌細胞4T1產生細胞毒性。另外,此星狀金奈米粒子具備光熱及光聲成像的特性,便於診斷較深層的腫瘤。綜上所述,此具有診斷及治療功能且可經由第二生物窗口紅外光激發的金複合量子點星狀奈米粒子(AuS@QDBNPEG NPs)於癌症治療的臨床應用上具有潛力。


    The development of a light sensitive combinatorial, targeted drug delivery system for cancer therapy is the main focus of this dissertation. Two different cancer models were explored using an external light stimulus-based nanoparticle therapeutic system, including organic and inorganic nanosystems, which exploits photodynamic (PD), photothermal (PT), and gas therapy techniques.
    The light sensitive nanoparticles exhibit a safe, enhanced efficacy and effectiveness against cancer therapy by utilizing external stimuli based non-invasive therapeutic techniques. Combining photothermal and photodynamic therapy (PTT/PDT) has been proposed as a popular curative strategy for cancer progression. Drug resistance in solid tumors with hypoxic tumor areas is still a problem for efficient tumor elimination. To overcome this problem, DPPC (Dipalmitoyl phosphatidylcholine), cholesterol, and charge-switchable moiety N-acetyl histidine modified D--tocopheryl polyethylene glycol succinate (NAcHis-TPGS) molecules were assembled to form a lipid/polymer-based nanoparticle (organic nanoparticles). Perfluorooctyl bromide (PFOB), mTHPC (PDT agent), and IR780 (PTT agent) were all encased inside organic nanoparticles (PFOB@IMHNPs) at the same time. The NPs with switchable surface charges were capable of selectively co-delivering two NIR dyes, IR-780 for photothermal therapy and mTHPC for photodynamic therapy, in response to tumor extracellular acidity (pHe). Furthermore, the pH-responsive charge switch ability trait resulted in increased cellular uptake, indicating that PFOB@IMHNPs have a strong cellular target ability. The NIR-triggered hyperthermia and subsequent release of oxygen from PFOB, used for PDT alongside mTHPC, was used to induce cytotoxicity of PFOB@IMHNPs against prostate cancer cells (TRAMP-C1). Ex vivo and in vivo imaging after PFOB@IMHNPs injection revealed significant drug accumulation in tumor interstitium and an effective hyperthermia effect on tumor ablation. As a result, tumor growth inhibition in vivo showed that the PTT/PDT combination therapy can effectively reduce tumor growth profile. The immunohistochemical analysis of tumor sections revealed that, increased oxygen molecule penetration across the hypoxic zone of the tumor and prevention of hypoxia inside the tumor. The findings showed that PFOB@IMHNPs can be used as a nanoplatform for PTT/PDT combination tumor therapy using a dual-stimulus activated method.

    By utilizing the PTT, PDT effect, the attractive optical and size tunability property of inorganic nanoparticles exhibited a large therapeutic efficacy and diagnosis capability in cancer therapy. Chemotherapy's cytotoxic efficacy is limited in cancer therapy due to poor drug solubility, non-specific biodistribution, and low diffusion rate. Combinatorial treatment techniques based on metallic nanosystems could circumvent these limitations. As a result, the appealing increased diffusivity nature of gas therapy, when combined with photothermal therapy (PTT), has shown a possible anti-cancer impact. By encapsulating a nitric oxide (NO) donor (N, N′-Di-sec-butyl-N, N′-dinitroso-1,4-phenylenediamine, (BNN6)) inside the quantum dot, unique near infrared-II sensitive plasmon-exciton gold nano star-quantum dot hybrid nanoparticles (AuS@QDBNPEG NPs) with high drug loading content are created (30 wt percent). AuS@QDBNPEG NPs produce a plasmon resonance energy transfer mediated NO generation and synergistic PTT effects in response to 1064 nm laser irradiation, resulting in robust killing of 4T1 (breast) cancer cells in vitro and in vivo. It also reduces the cancerous cell‘s antioxidant capacity by depleting cellular glutathione via the NO mediated oxidation process. The plasmon-exciton hybrid system's star-shaped gold core should improve photothermal/photoacoustic imaging, resulting in a novel paradigm of diagnostics and an effective gaseous-photothermal combinatorial therapy method for deep-seated cancers. The innovative multifunctional on-demand stimuli-responsive plasmon-exciton nano theranostics hybrid device activated in a second biological window is very attractive for clinical use.

    Table of Contents Acknowledgement i 摘要 ii Abstract iv Abbreviation vi Table of Contents viii List of Tables xiii List of Figures xiv Chapter I Introduction 1 Chapter II Review of Literature and Motivation 9 2.1. Tumor microenvironment 9 2.1.1. Non-cellular tumor microenvironment 9 2.1.2. Hypoxia 10 2.1.3. Enhanced permeability and retention effect 11 2.2. Therapeutic strategies 12 2.2.1. Photothermal therapy 12 2.2.1.1. IR-780 dye 13 2.2.1.2. Plasmonic gold nanomaterials 14 2.2.2. Photodynamic therapy 14 2.2.2.1. mTHPC 15 2.2.3. Gas therapy 16 2.2.3.1. Oxygen therapy and oxygen delivering compound (PFOB) 17 2.2.3.2. Perfluorocarbons 17 2.2.3.3. PFOB 17 2.2.3.4. Nitric oxide and NO releasing compound 18 2.2.3.5. BNN6 18 2.3. Stimuli-responsive drug delivery system 19 2.4. Photo-responsive drug delivery system 20 2.4.1. Light interaction or penetration 20 2.4.2. Mechanism of photo-responsive drug delivery system 21 2.4.2.1. Photochemical reactions 21 2.4.2.2. Photooxidation 22 2.4.2.3. Photothermal release 22 2.4.2.4. Photonic enhancement-based cleavage 23 2.4.2.5. BNN6 cleavage 25 2.5. Types of photo-responsive nanoparticles and photo-triggered combinational cancer therapies 26 2.5.1. Organic nanoparticles- components 28 2.5.1.1. Organic nanoparticles 28 2.5.1.2. Nano emulsion 28 2.5.1.3. D-α-tocopheryl poly (ethylene glycol) succinate (TPGS) 29 2.5.1.4. Histidine and Imidazole contain polymer in drug delivery system 30 2.5.1.5. Photo-responsive organic nanoparticles drug delivery system with combinational therapies 31 2.5.2. Inorganic nanoparticles 32 2.5.2.1. Gold nanoparticles 33 2.5.2.2. Graphene oxide quantum dot 34 2.5.2.3. Photo-responsive inorganic hybrid drug delivery system with combinational therapies 36 2.5.2.4. Photoacoustic imaging 36 2.5.2.5. Endogenous contrast agents for PA 38 2.5.2.6. Exogeneous contrast agents for PA 38 2.6. Motivation 39 2.7. References 41 Chapter III - Tumor microenvironment-responsive and oxygen self-sufficient oil droplet nanoparticles for enhanced photothermal/photodynamic combination therapy against hypoxic tumors 52 3.1. Introduction 52 3.2. Materials and Methods 55 3.2.1. Materials 55 3.2.2. Methods 56 3.2.2.1. NAcHis-TPGS synthesis 56 3.2.2.2. Nanoparticles preparation 56 3.3. Physio-chemical characterization of NPs 57 3.3.1. Size measurement by dynamic light scattering (DLS) and transmission electron microscopy (TEM) 57 3.3.2. Drug loading content 58 3.3.3. Photothermal property and oxygen release 58 3.3.4. Photodynamic effect 59 3.4. In vitro cell culture experiments 60 3.4.1. In vitro cellular uptake study 60 3.4.2. Intracellular ROS generation 61 3.4.3. In vitro cytotoxicity examination 62 3.5. Animal model 63 3.5.1. In vivo biodistribution and near-infrared-triggered tumor hyperthermia 63 3.5.2. Detection of tumor hypoxia status 64 3.5.3. In vivo antitumor effects 64 3.6. Statistical analysis 64 3.7. Results and Discussion 65 3.7.1. NAcHis –TPGS synthesis and characterization 65 3.7.2. Preparation and characterization of therapeutic oil droplet NPs 65 3.7.3. Drug loading efficiency and photothermal property 69 3.7.4. In vitro oxygen delivery of PFOB droplet NPs 70 3.8. In vitro cell culture effect 73 3.8.1. In vitro pH-responsive cellular uptake 73 3.8.2. Intracellular generation of singlet oxygen 74 3.8.3. In vitro efficacy of combined PT/PD therapy of cargo-carrying NPs 76 3.9. In vivo biodistribution and therapeutic effect 77 3.9.1. In vivo biodistribution of NPs and NIR-triggered tumor hyperthermia 77 3.9.2. Inhibition of in vivo tumor growth by combined PT/PD therapy 80 3.9.3. In vivo tumor-targeted oxygen delivery 84 3.10. Conclusion 87 3.11. References 88 Chapter IV- Photothermal/NO combination therapy from plasmonic hybrid nanotherapeutics against breast cancer 92 4.1. Introduction 92 4.2. Materials and Methods 95 4.2.1. Materials 95 4.2.2. Methods 95 4.2.2.1. Synthesis of graphene quantum dots (QDs) 95 4.2.2.2. Synthesis of AuS@QD hybrid NPs 96 4.2.2.3. Synthesis of BNN6 96 4.2.2.4. Synthesis of the PEG-pyrene conjugate 97 4.3. Characterization of nanoparticles 97 4.3.1. NPs Structural Characterization 97 4.3.2. BNN6 loading 97 4.3.3. Drug loading efficiency of NPs 98 4.3.4. Stability of NPs 99 4.3.5. Photothermal performance and NO production by NIR-II laser 99 4.4. In-vitro cell culture experiments 100 4.4.1. In vitro cellular uptake of NPs 100 4.4.2. Intracellular NO production 100 4.4.3. In vitro combined effect of photothermal/NO therapy 101 4.4.4. Intracellular GSH measurement 102 4.5. Animal study 102 4.5.1. Photoacoustic imaging 103 4.5.2. In vivo biodistribution study 103 4.5.3. Laser tissue penetration 104 4.6. In vivo therapeutic effect 104 4.6.1. In vivo tumor growth inhibition 104 4.6.2. IHC staining of tumor tissues 104 4.6.3. Systemic toxicity evaluation 105 4.6.4. Statistical analysis 106 4.7. Result and discussion 106 4.7.1. Graphene quantum dot and gold spherical nanoparticles preparation 106 4.7.2. Hybrid nanoparticles preparation 108 4.7.3. Characterization of hybrid nanoparticles 109 4.7.4. Drug loading and characterization of hybrid nanoparticles 113 4.7.5. Properties of drug-loaded nanoparticles 119 4.7.6. Stability of nanoparticles 120 4.7.7. Photothermal property of NPs 121 4.7.8. Nitric oxide release from NPs 123 4.8. In vitro cell culture studies 127 4.8.1. In vitro cellular uptake 127 4.8.2. Intracellular NO generation 128 4.8.3. In vitro photothermal effect 130 4.8.4. Nitric oxide reactivity to intracellular GSH 131 4.8.5. In vitro combinational therapeutic effect 133 4.9. In vivo imaging and biodistribution studies 136 4.9.1. In vivo photoacoustic (PA) imaging 136 4.9.2. Biodistribution study of NPs by IVIS 138 4.9.3. In vivo therapeutic effect in 4T1 breast cancer model 139 4.9.4. IHC study of tumor tissue 145 4.9.5. Biosafety characterization 149 4.10. Conclusion 150 4.11. References 152 Chapter V Conclusion and Future Perspective 157

    Chapter 1. References
    [1] R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2018, CA: Cancer J. Clin, 68 (2018) 7-30.

    [2] S. Skalickova, M. Loffelmann, M. Gargulak, M. Kepinska, M. Docekalova, D. Uhlirova, M. Stankova, C. Fernandez, H. Milnerowicz, B. Ruttkay-Nedecky, R. Kizek, Zinc-modified nanotransporter of doxorubicin for targeted prostate cancer delivery, Nanomaterials (Basel), 7 (2017) 435.

    [3] R. Baskar, K.A. Lee, R. Yeo, K.W. Yeoh, Cancer and radiation therapy: current advances and future directions, Int. J. Med. Sci, 9 (2012) 193-199.

    [4] M. Arruebo, N. Vilaboa, B. Sáez-Gutierrez, J. Lambea, A. Tres, M. Valladares, A. González-Fernández, Assessment of the evolution of cancer treatment therapies, Cancers (Basel), 3 (2011) 3279-3330.

    [5] J. Stritzker, A.A. Szalay, Single-agent combinatorial cancer therapy, Proc. Natl. Acad. Sci, 110 (2013) 8325.

    [6] A.Z. Mirza, F.A. Siddiqui, Nanomedicine and drug delivery: a mini review, Int. Nano Lett, 4 (2014) 94.

    [7] C.A. Cheng, T. Deng, F.C. Lin, Y. Cai, J.I. Zink, Supramolecular nanomachines as stimuli-responsive gatekeepers on mesoporous silica nanoparticles for antibiotic and cancer drug delivery, Theranostics, 9 (2019) 3341-3364.

    [8] Z. Li, N. Song, Y.-W. Yang, Stimuli-responsive drug-delivery systems based on supramolecular nanovalves, Matter, 1 (2019) 345-368.

    [9] N. Song, X.-Y. Lou, L. Ma, H. Gao, Y.-W. Yang, Supramolecular nanotheranostics based on pillarenes, Theranostics, 9 (2019) 3075-3093.

    [10] P. Mi, Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics, Theranostics, 10 (2020) 4557-4588.

    [11] P. Pan, D. Svirskis, S.W.P. Rees, D. Barker, G.I.N. Waterhouse, Z. Wu, Photosensitive drug delivery systems for cancer therapy:
    Mechanisms and applications, J. Control. Release, 338 (2021) 446-461.

    [12] D. Sheng, T. Liu, L. Deng, L. Zhang, X. Li, J. Xu, L. Hao, P. Li, H. Ran, H. Chen, Z. Wang, Perfluorooctyl bromide & indocyanine green co-loaded nanoliposomes for enhanced multimodal imaging-guided phototherapy, Biomaterials, 165 (2018) 1-13.

    [13] S.S. Wan, J.Y. Zeng, H. Cheng, X.Z. Zhang, ROS-induced NO generation for gas therapy and sensitizing photodynamic therapy of tumor, Biomaterials, 185 (2018) 51-62.

    [14] W. Fan, B.C. Yung, X. Chen, Stimuli-responsive NO release for on-demand gas-sensitized synergistic cancer therapy, Angew Chem, 57 (2018) 8383-8394.

    [15] X. Li, Y. Zhang, J. Sun, W. Chen, X. Wang, F. Shao, Y. Zhu, F. Feng, Y. Sun, Protein nanocage-based photo-controlled nitric oxide releasing platform, ACS Appl. Mater. Interfaces, 9 (2017) 19519-19524.

    [16] J. Fan, Q. He, Y. Liu, F. Zhang, X. Yang, Z. Wang, N. Lu, W. Fan, L. Lin, G. Niu, N. He, J. Song, X. Chen, Light-responsive biodegradable nanomedicine overcomes multidrug resistance via NO-enhanced chemosensitization, ACS Appl. Mater. Interfaces, 8 (2016) 13804-13811.

    [17] X. Huang, F. Xu, H. Hou, J. Hou, Y. Wang, S. Zhou, Stimuli-responsive nitric oxide generator for light-triggered synergistic cancer photothermal/gas therapy, Nano Res, 12 (2019) 1361-1370.

    [18] J. Wang, L. Liu, Q. You, Y. Song, Q. Sun, Y. Wang, Y. Cheng, F. Tan, N. Li, All-in-one theranostic nanoplatform based on hollow MoS(x) for photothermally-maneuvered oxygen self-enriched photodynamic therapy, Theranostics, 8 (2018) 955-971.

    [19] D.E.J.G.J. Dolmans, D. Fukumura, R.K. Jain, Photodynamic therapy for cancer, Nat. Rev. Cancer, 3 (2003) 380-387.

    [20] Z. Zhou, B. Zhang, H. Wang, A. Yuan, Y. Hu, J. Wu, Two-stage oxygen delivery for enhanced radiotherapy by perfluorocarbon nanoparticles, Theranostics, 8 (2018) 4898-4911.

    [21] L.J. Frederiksen, R. Sullivan, L.R. Maxwell, S.K. Macdonald-Goodfellow, M.A. Adams, B.M. Bennett, D.R. Siemens, C.H. Graham, Chemosensitization of cancer in vitro and in vivo by nitric oxide signaling, Clin. Cancer Res, 13 (2007) 2199-2206.

    [22] J. Kim, B.C. Yung, W.J. Kim, X. Chen, Combination of nitric oxide and drug delivery systems: tools for overcoming drug resistance in chemotherapy, J. Control. Release, 263 (2017) 223-230.

    [23] C. Szabó, Hydrogen sulphide and its therapeutic potential, Nat. Rev. Drug Discov, 6 (2007) 917-935.

    [24] R. Motterlini, L.E. Otterbein, The therapeutic potential of carbon monoxide, Nat. Rev. Drug Discov, 9 (2010) 728-743.

    [25] V.V. Mody, R. Siwale, A. Singh, H.R. Mody, Introduction to metallic nanoparticles, J. Pharm. Bioallied Sci, 2 (2010) 282-289.

    Chapter 2. References

    [1] M. Wang, J. Zhao, L. Zhang, F. Wei, Y. Lian, Y. Wu, Z. Gong, S. Zhang, J. Zhou, K. Cao, X. Li, W. Xiong, G. Li, Z. Zeng, C. Guo, Role of tumor microenvironment in tumorigenesis, J Cancer, 8 (2017) 761-773.

    [2] L. Laplane, D. Duluc, A. Bikfalvi, N. Larmonier, T. Pradeu, Beyond the tumour microenvironment, Int J Cancer, 145 (2019) 2611-2618.

    [3] C. Laplagne, M. Domagala, A. Le Naour, C. Quemerais, D. Hamel, J.J. Fournié, B. Couderc, C. Bousquet, A. Ferrand, M. Poupot, Latest advances in targeting the tumor microenvironment for tumor suppression, Int J Mol Sci, 20 (2019).

    [4] F. Danhier, O. Feron, V. Préat, To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery, J Control Release, 148 (2010) 135-146.

    [5] M.Z. Jin, W.L. Jin, The updated landscape of tumor microenvironment and drug repurposing, Signal Transduct Target Ther, 5 (2020) 166.

    [6] C. Corbet, O. Feron, Tumour acidosis: from the passenger to the driver's seat, Nat Rev Cancer, 17 (2017) 577-593.

    [7] P. Vaupel, O. Thews, M. Hoeckel, Treatment resistance of solid tumors: role of hypoxia and anemia, Med Oncol, 18 (2001) 243-259.

    [8] P. Vaupel, A. Mayer, M. Höckel, Tumor hypoxia and malignant progression, Methods Enzymol, 381 (2004) 335-354.

    [9] P. Vaupel, S. Briest, M. Höckel, Hypoxia in breast cancer: pathogenesis, characterization and biological/therapeutic implications, Wien Med Wochenschrift, 152 (2002) 334-342.

    [10] S. Kizaka-Kondoh, M. Inoue, H. Harada, M. Hiraoka, Tumor hypoxia: a target for selective cancer therapy, Cancer Sci, 94 (2003) 1021-1028.

    [11] J.-P. Cosse, C. Michiels, Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression, Anti-Cancer Agents Med Chem, 8 (2008) 790-797.

    [12] J.A. Bertout, S.A. Patel, M.C. Simon, The impact of O2 availability on human cancer, Nat Rev Cancer, 8 (2008) 967-975.

    [13] J. Wu, The enhanced permeability and retention (EPR) effect: the significance of the concept and methods to enhance its application, J Pers Med, 11 (2021).

    [14] J. Fang, H. Nakamura, H. Maeda, The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect, Adv Drug Deliv Rev, 63 (2011) 136-151.

    [15] A.M. Jhaveri, V.P. Torchilin, Multifunctional polymeric micelles for delivery of drugs and siRNA, Front Pharmacol, 5 (2014) 77-77.

    [16] F. Chen, W. Cai, Nanomedicine for targeted photothermal cancer therapy: where are we now?, Nanomedicine, 10 (2015) 1-3.

    [17] M.P. Melancon, M. Zhou, C. Li, Cancer theranostics with near-infrared light-activatable multimodal nanoparticles, Acc Chem Res, 44 (2011) 947-956.

    [18] X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, N. Zheng, Freestanding palladium nanosheets with plasmonic and catalytic properties, Nat Nanotechnol, 6 (2011) 28-32.

    [19] C.G. Alves, R. Lima-Sousa, D. de Melo-Diogo, R.O. Louro, I.J. Correia, IR780 based nanomaterials for cancer imaging and photothermal, photodynamic and combinatorial therapies, Int J Pharm, 542 (2018) 164-175.

    [20] L. Zhang, H. Yi, J. Song, J. Huang, K. Yang, B. Tan, D. Wang, N. Yang, Z. Wang, X. Li, Mitochondria-targeted and ultrasound-activated nanodroplets for enhanced deep-penetration sonodynamic cancer therapy, ACS Appl Mater Interfaces, 11 (2019) 9355-9366.

    [21] Z. Yang, J. Wang, S. Liu, X. Li, L. Miao, B. Yang, C. Zhang, J. He, S. Ai, W. Guan, Defeating relapsed and refractory malignancies through a nano-enabled mitochondria-mediated respiratory inhibition and damage pathway, Biomaterials, 229 (2020) 119580.

    [22] L. Zhang, D. Wang, K. Yang, D. Sheng, B. Tan, Z. Wang, H. Ran, H. Yi, Y. Zhong, H. Lin, Y. Chen, Mitochondria-targeted artificial "Nano-RBCs" for amplified synergistic cancer phototherapy by a single NIR irradiation, Adv Sci (Weinh), 5 (2018) 1800049.

    [23] P. Bhattarai, Z. Dai, Cyanine based nanoprobes for cancer theranostics, Adv Healthc Mater, 6 (2017).

    [24] M. Moros, A. Lewinska, F. Merola, P. Ferraro, M. Wnuk, A. Tino, C. Tortiglione, Gold nanorods and nanoprisms mediate different photothermal cell death mechanisms in vitro and in vivo, ACS Appl Mater Interfaces, 12 (2020) 13718-13730.

    [25] R. García-Álvarez, L. Chen, A. Nedilko, A. Sánchez-Iglesias, A. Rix, W. Lederle, V. Pathak, T. Lammers, G. von Plessen, K. Kostarelos, L.M. Liz-Marzán, A.J.C. Kuehne, D.N. Chigrin, Optimizing the geometry of photoacoustically active gold nanoparticles for biomedical imaging, ACS Photonics, 7 (2020) 646-652.

    [26] T. Lunnoo, J. Assawakhajornsak, S. Ruangchai, T. Puangmali, Role of surface functionalization on cellular uptake of AuNPs characterized by computational microscopy, J Phys Chem B, 124 (2020) 1898-1908.

    [27] Y. Wang, K.C.L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S.-Y. Liu, M. Li, P. Kim, Z.-Y. Li, L.V. Wang, Y. Liu, Y. Xia, Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment, ACS Nano, 7 (2013) 2068-2077.

    [28] Y.-X. Chang, N.-N. Zhang, Y.-C. Xing, Q. Zhang, A. Oh, H.-M. Gao, Y. Zhu, H. Baik, B. Kim, Y. Yang, W.-S. Chang, T. Sun, J. Zhang, Z.-Y. Lu, K. Lee, S. Link, K. Liu, Gold nanotetrapods with unique topological structure and ultranarrow plasmonic band as multifunctional therapeutic agents, J Phys Chem Lett, 10 (2019) 4505-4510.

    [29] D.E. Dolmans, D. Fukumura, R.K. Jain, Photodynamic therapy for cancer, Nat Rev Cancer, 3 (2003) 380-387.

    [30] M.O. Senge, mTHPC – A drug on its way from second to third generation photosensitizer?, Photodiagnosis and Photodynamic Therapy, 9 (2012) 170-179.

    [31] H. Hefesha, S. Loew, X. Liu, S. May, A. Fahr, Transfer mechanism of temoporfin between liposomal membranes, J Control Release, 150 (2011) 279-286.

    [32] Y.C. Tsai, P. Vijayaraghavan, W.H. Chiang, H.H. Chen, T.I. Liu, M.Y. Shen, A. Omoto, M. Kamimura, K. Soga, H.C. Chiu, Targeted delivery of functionalized upconversion nanoparticles for externally triggered photothermal/photodynamic therapies of brain glioblastoma, Theranostics, 8 (2018) 1435-1448.

    [33] Z. Zhou, B. Zhang, H. Wang, A. Yuan, Y. Hu, J. Wu, Two-stage oxygen delivery for enhanced radiotherapy by perfluorocarbon nanoparticles, Theranostics, 8 (2018) 4898-4911.

    [34] S. Huerta, S. Chilka, B. Bonavida, Nitric oxide donors: novel cancer therapeutics (review), Int J Oncol, 33 (2008) 909-927.

    [35] R. Motterlini, L.E. Otterbein, The therapeutic potential of carbon monoxide, Nat Rev Drug Discov, 9 (2010) 728-743.

    [36] S.S. Wan, J.Y. Zeng, H. Cheng, X.Z. Zhang, ROS-induced NO generation for gas therapy and sensitizing photodynamic therapy of tumor, Biomaterials, 185 (2018) 51-62.

    [37] C. Szabó, Hydrogen sulphide and its therapeutic potential, Nat Rev Drug Discov, 6 (2007) 917-935.

    [38] C. Szabo, Gasotransmitters in cancer: from pathophysiology to experimental therapy, Nat Rev Drug Discov, 15 (2016) 185-203.

    [39] Q. He, Precision gas therapy using intelligent nanomedicine, Biomater Sci, 5 (2017) 2226-2230.

    [40] M. Yu, X. Xu, Y. Cai, L. Zou, X. Shuai, Perfluorohexane-cored nanodroplets for stimulations-responsive ultrasonography and O(2)-potentiated photodynamic therapy, Biomaterials, 175 (2018) 61-71.

    [41] D.-W. Zheng, B. Li, C.-X. Li, J.-X. Fan, Q. Lei, C. Li, Z. Xu, X.-Z. Zhang, Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting, ACS Nano, 10 (2016) 8715-8722.

    [42] C. McEwan, J. Owen, E. Stride, C. Fowley, H. Nesbitt, D. Cochrane, C.C. Coussios, M. Borden, N. Nomikou, A.P. McHale, J.F. Callan, Oxygen carrying microbubbles for enhanced sonodynamic therapy of hypoxic tumours, J Control Release, 203 (2015) 51-56.

    [43] S. Gao, P. Zheng, Z. Li, X. Feng, W. Yan, S. Chen, W. Guo, D. Liu, X. Yang, S. Wang, X.J. Liang, J. Zhang, Biomimetic O(2)-Evolving metal-organic framework nanoplatform for highly efficient photodynamic therapy against hypoxic tumor, Biomaterials, 178 (2018) 83-94.

    [44] R. Song, D. Hu, H.Y. Chung, Z. Sheng, S. Yao, Lipid-Polymer Bilaminar Oxygen Nanobubbles for Enhanced Photodynamic Therapy of Cancer, ACS Appl Mater Interfaces, 10 (2018) 36805-36813.

    [45] C.S. Cohn, M.M. Cushing, Oxygen therapeutics: perfluorocarbons and blood substitute safety, Crit Care Clin, 25 (2009) 399-414, Table of Contents.

    [46] R.B. Hirschl, W.F. Philip, L. Glick, J. Greenspan, K. Smith, A. Thompson, J. Wilson, N.S. Adzick, A prospective, randomized pilot trial of perfluorocarbon-induced lung growth in newborns with congenital diaphragmatic hernia, J Pediatr Surg, 38 (2003) 283-289; discussion 283-289.

    [47] E.P. Wesseler, R. Iltis, L.C. Clark, The solubility of oxygen in highly fluorinated liquids, J Fluor Chem, 9 (1977) 137-146.

    [48] M.D. Conway, G.A. Peyman, M. Karaçorlu, N. Bhatt, K.F. Soike, L.C. Clark, Jr., R.E. Hoffmann, Perfluorooctylbromide (PFOB) as a vitreous substitute in non-human primates, Int Ophthalmol, 17 (1993) 259-264.

    [49] E. Pisani, N. Tsapis, B. Galaz, M. Santin, R. Berti, N. Taulier, E. Kurtisovski, O. Lucidarme, M. Ourevitch, B.T. Doan, J.C. Beloeil, B. Gillet, W. Urbach, S.L. Bridal, E. Fattal, Perfluorooctyl bromide polymeric capsules as dual contrast agents for ultrasonography and magnetic resonance imaging, Adv Funct Mater, 18 (2008) 2963-2971.

    [50] H.-T. Chung, H.-O. Pae, B.-M. Choi, T.R. Billiar, Y.-M. Kim, Nitric oxide as a bioregulator of apoptosis, Biochem Biophys Res commun, 282 (2001) 1075-1079.

    [51] W. Fan, N. Lu, P. Huang, Y. Liu, Z. Yang, S. Wang, G. Yu, Y. Liu, J. Hu, Q. He, J. Qu, T. Wang, X. Chen, Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer starving-like/gas therapy, Angew Chem, 56 (2017) 1229-1233.

    [52] L. Chen, S.-F. Zhou, L. Su, J. Song, Gas-mediated cancer bioimaging and therapy, ACS Nano, 13 (2019) 10887-10917.

    [53] D.D. Thomas, Breathing new life into nitric oxide signaling: A brief overview of the interplay between oxygen and nitric oxide, Redox Biol, 5 (2015) 225-233.

    [54] M.F. Chung, H.Y. Liu, K.J. Lin, W.T. Chia, H.W. Sung, A pH-responsive carrier system that generates NO bubbles to trigger drug release and reverse P-glycoprotein-mediated multidrug resistance, Angew Chem, 54 (2015) 9890-9893.

    [55] L.A. Evans, M. Petrovic, M. Antonijevic, C. Wiles, P. Watts, J. Wadhawan, N−N bond cleavage in N-nitrosoarylamines, J Phys Chem C, 112 (2008) 12928-12935.

    [56] J. Fan, Q. He, Y. Liu, F. Zhang, X. Yang, Z. Wang, N. Lu, W. Fan, L. Lin, G. Niu, N. He, J. Song, X. Chen, Light-responsive biodegradable nanomedicine overcomes multidrug resistance via NO-enhanced chemosensitization, ACS Appl Mater Interfaces, 8 (2016) 13804-13811.

    [57] J. Fan, N. He, Q. He, Y. Liu, Y. Ma, X. Fu, Y. Liu, P. Huang, X. Chen, A novel self-assembled sandwich nanomedicine for NIR-responsive release of NO, Nanoscale, 7 (2015) 20055-20062.

    [58] P. Mi, Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics, Theranostics, 10 (2020) 4557-4588.

    [59] C.S. Kim, B. Duncan, B. Creran, V.M. Rotello, Triggered nanoparticles as therapeutics, Nano Today, 8 (2013) 439-447.

    [60] Q. Liu, C. Zhan, D.S. Kohane, Phototriggered drug delivery using inorganic nanomaterials, Bioconjug Chem, 28 (2017) 98-104.

    [61] S. Thomsen, J.A. Pearce, Thermal damage and rate processes in biologic tissues, in: A.J. Welch, M.J.C. van Gemert (Eds.) Optical-Thermal Response of Laser-Irradiated Tissue, Springer Netherlands, Dordrecht, 2011, pp. 487-549.

    [62] R. Steiner, Laser-Tissue Interactions, in: C. Raulin, S. Karsai (Eds.) Laser and IPL Technology in Dermatology and Aesthetic Medicine, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 23-36.

    [63] X. Zhang, L. An, Q. Tian, J. Lin, S. Yang, Tumor microenvironment-activated NIR-II reagents for tumor imaging and therapy, J Mater Chem B, 8 (2020) 4738-4747.

    [64] C.S. Linsley, B.M. Wu, Recent advances in light-responsive on-demand drug-delivery systems, Ther Deliv, 8 (2017) 89-107.

    [65] P. Pan, D. Svirskis, S.W.P. Rees, D. Barker, G.I.N. Waterhouse, Z. Wu, Photosensitive drug delivery systems for cancer therapy: Mechanisms and applications, J Control Release, 338 (2021) 446-461.

    [66] M. Schieber, N.S. Chandel, ROS function in redox signaling and oxidative stress, Curr Biol, 24 (2014) R453-462.

    [67] B. Marchetti, T.N.V. Karsili, An exploration of the reactivity of singlet oxygen with biomolecular constituents, ChemComm, 52 (2016) 10996-10999.

    [68] D. Miranda, J.F. Lovell, Mechanisms of light-induced liposome permeabilization, Bioeng Transl Med, 1 (2016) 267-276.

    [69] A.W. Girotti, Photodynamic lipid peroxidation in biological systems, Photochem Photobiol, 51 (1990) 497-509.

    [70] D. Luo, N. Li, K.A. Carter, C. Lin, J. Geng, S. Shao, W.C. Huang, Y. Qin, G.E. Atilla-Gokcumen, J.F. Lovell, Rapid light-triggered drug release in liposomes containing small amounts of unsaturated and porphyrin-phospholipids, Small, 12 (2016) 3039-3047.

    [71] H.J. Cho, M. Chung, M.S. Shim, Engineered photo-responsive materials for near-infrared-triggered drug delivery, J Ind Eng Chem, 31 (2015) 15-25.

    [72] P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition:  Applications in biological imaging and biomedicine, J Phys Chem B, 110 (2006) 7238-7248.

    [73] B. Du, L. Lin, W. Liu, S. Zu, Y. Yu, Z. Li, Y. Kang, H. Peng, X. Zhu, Z. Fang, Plasmonic hot electron tunneling photodetection in vertical Au–graphene hybrid nanostructures, Laser Photonics Rev 11 (2017) 1600148.

    [74] X. Fang, S. Cai, M. Wang, Z. Chen, C. Lu, H. Yang, Photogenerated holes mediated nitric oxide production for hypoxic tumor treatment, Angew Chem, 60 (2021) 7046-7050.

    [75] S.K. Cushing, N. Wu, Plasmon-enhanced solar energy harvesting, Interface magazine, 22 (2013) 63-67.

    [76] S.K. Cushing, J. Li, F. Meng, T.R. Senty, S. Suri, M. Zhi, M. Li, A.D. Bristow, N. Wu, Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor, J Am Chem Soc, 134 (2012) 15033-15041.

    [77] J.M. Silva, E. Silva, R.L. Reis, Light-triggered release of photocaged therapeutics - Where are we now?, J Control Release, 298 (2019) 154-176.

    [78] D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy, Nat Nanotechnol, 2 (2007) 751-760.

    [79] A.Y. Rwei, W. Wang, D.S. Kohane, Photoresponsive nanoparticles for drug delivery, Nano today, 10 (2015) 451-467.

    [80] A.M. Shannon, D.J. Bouchier-Hayes, C.M. Condron, D. Toomey, Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies, Cancer Treat Rev, 29 (2003) 297-307.

    [81] A. Casas, G. Di Venosa, T. Hasan, B. Al, Mechanisms of resistance to photodynamic therapy, Curr Med Chem, 18 (2011) 2486-2515.

    [82] J. Ragaz, S.M. Jackson, N. Le, I.H. Plenderleith, J.J. Spinelli, V.E. Basco, K.S. Wilson, M.A. Knowling, C.M. Coppin, M. Paradis, A.J. Coldman, I.A. Olivotto, Adjuvant radiotherapy and chemotherapy in node-positive premenopausal women with breast cancer, N Engl J Med, 337 (1997) 956-962.

    [83] L.J. Frederiksen, R. Sullivan, L.R. Maxwell, S.K. Macdonald-Goodfellow, M.A. Adams, B.M. Bennett, D.R. Siemens, C.H. Graham, Chemosensitization of cancer in vitro and in vivo by nitric oxide signaling, Clin Cancer Res, 13 (2007) 2199.

    [84] R. Jahanban-Esfahlan, M. de la Guardia, D. Ahmadi, B. Yousefi, Modulating tumor hypoxia by nanomedicine for effective cancer therapy, J Cell Physiol, 233 (2018) 2019-2031.

    [85] M. Hussein Kamareddine, Y. Ghosn, A. Tawk, C. Elia, W. Alam, J. Makdessi, S. Farhat, Organic nanoparticles as drug delivery systems and their potential role in the treatment of chronic myeloid leukemia, Technol Cancer Res Treat, 18 (2019) 1533033819879902.

    [86] Y. Singh, J.G. Meher, K. Raval, F.A. Khan, M. Chaurasia, N.K. Jain, M.K. Chourasia, Nanoemulsion: Concepts, development and applications in drug delivery, J Control Release, 252 (2017) 28-49.

    [87] Y. Zhang, Z. Shang, C. Gao, M. Du, S. Xu, H. Song, T. Liu, Nanoemulsion for solubilization, stabilization, and in vitro release of pterostilbene for oral delivery, AAPS PharmSciTech, 15 (2014) 1000-1008.

    [88] Z. Zhang, S. Tan, S.S. Feng, Vitamin E TPGS as a molecular biomaterial for drug delivery, Biomaterials, 33 (2012) 4889-4906.

    [89] G. Szakács, J.K. Paterson, J.A. Ludwig, C. Booth-Genthe, M.M. Gottesman, Targeting multidrug resistance in cancer, Nat Rev Drug Discov, 5 (2006) 219-234.

    [90] E.-M. Collnot, C. Baldes, M.F. Wempe, R. Kappl, J. Hüttermann, J.A. Hyatt, K.J. Edgar, U.F. Schaefer, C.-M. Lehr, Mechanism of inhibition of p-glycoprotein mediated efflux by vitamin E TPGS:  influence on ATPase activity and membrane fluidity, Mol Pharm, 4 (2007) 465-474.

    [91] R.V. Benjaminsen, M.A. Mattebjerg, J.R. Henriksen, S.M. Moghimi, T.L. Andresen, The possible "proton sponge " effect of polyethylenimine (PEI) does not include change in lysosomal pH, Mol Ther, 21 1 (2013) 149-157.

    [92] E.S. Lee, H.J. Shin, K. Na, Y.H. Bae, Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization, J Control Release, 90 (2003) 363-374.

    [93] L. Qiu, Z. Li, M. Qiao, M. Long, M. Wang, X. Zhang, C. Tian, D. Chen, Self-assembled pH-responsive hyaluronic acid–g-poly(l-histidine) copolymer micelles for targeted intracellular delivery of doxorubicin, Acta Biomater, 10 (2014) 2024-2035.

    [94] S.P. Edgcomb, K.P. Murphy, Variability in the pKa of histidine side-chains correlates with burial within proteins, Proteins, 49 (2002) 1-6.

    [95] S.A. Kulkarni, S.S. Feng, Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery, Pharm Res, 30 (2013) 2512-2522.

    [96] A.D. Bangham, M.M. Standish, J.C. Watkins, Diffusion of univalent ions across the lamellae of swollen phospholipids, J Mol Biol, 13 (1965) 238-IN227.

    [97] G. Vilar, J. Tulla-Puche, F. Albericio, Polymers and drug delivery systems, Curr Drug Deliv, 9 (2012) 367-394.

    [98] H. Wei, R.-X. Zhuo, X.-Z. Zhang, Design and development of polymeric micelles with cleavable links for intracellular drug delivery, Prog Polym Sci, 38 (2013) 503-535.

    [99] K.F. Chu, D.E. Dupuy, Thermal ablation of tumours: biological mechanisms and advances in therapy, Nat Rev Cancer, 14 (2014) 199-208.

    [100] Y. Wang, G. Wei, X. Zhang, F. Xu, X. Xiong, S. Zhou, A step-by-step multiple stimuli-responsive nanoplatform for enhancing combined chemo-photodynamic therapy, Adv Mater, 29 (2017).

    [101] D. Sheng, T. Liu, L. Deng, L. Zhang, X. Li, J. Xu, L. Hao, P. Li, H. Ran, H. Chen, Z. Wang, Perfluorooctyl bromide & indocyanine green co-loaded nanoliposomes for enhanced multimodal imaging-guided phototherapy, Biomaterials, 165 (2018) 1-13.

    [102] J.R. McCarthy, R. Weissleder, Multifunctional magnetic nanoparticles for targeted imaging and therapy, Adv Drug Deliv Rev, 60 (2008) 1241-1251.

    [103] M. Mir, S. Ishtiaq, S. Rabia, M. Khatoon, A. Zeb, G.M. Khan, A. ur Rehman, F. ud Din, Nanotechnology: from In Vivo Imaging System to Controlled Drug Delivery, Nanoscale Res Lett, 12 (2017) 500.

    [104] H.C. Huang, S. Barua, G. Sharma, S.K. Dey, K. Rege, Inorganic nanoparticles for cancer imaging and therapy, J Control Release, 155 (2011) 344-357.

    [105] L. Zhang, Y. Li, J.C. Yu, Chemical modification of inorganic nanostructures for targeted and controlled drug delivery in cancer treatment, J Mater Chem B, 2 (2014) 452-470.

    [106] S. Rana, A. Bajaj, R. Mout, V.M. Rotello, Monolayer coated gold nanoparticles for delivery applications, Adv Drug Deliv Rev, 64 (2012) 200-216.

    [107] Y.-C. Yeh, B. Creran, V.M. Rotello, Gold nanoparticles: preparation, properties, and applications in bionanotechnology, Nanoscale, 4 (2012) 1871-1880.

    [108] C.M. Cobley, J. Chen, E.C. Cho, L.V. Wang, Y. Xia, Gold nanostructures: a class of multifunctional materials for biomedical applications, Chem Soc Rev, 40 (2011) 44-56.

    [109] E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, The golden age: gold nanoparticles for biomedicine, Chem Soc Rev, 41 (2012) 2740-2779.

    [110] M. Hu, J. Chen, Z.-Y. Li, L. Au, G.V. Hartland, X. Li, M. Marquez, Y. Xia, Gold nanostructures: engineering their plasmonic properties for biomedical applications, Chem Soc Rev, 35 (2006) 1084-1094.

    [111] H. Yuan, C.G. Khoury, H. Hwang, C.M. Wilson, G.A. Grant, T. Vo-Dinh, Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging, Nanotechnology, 23 (2012) 075102.

    [112] S.Y. Ju, W.P. Kopcha, F. Papadimitrakopoulos, Brightly fluorescent single-walled carbon nanotubes via an oxygen-excluding surfactant organization, Science, 323 (2009) 1319-1323.

    [113] S.N. Baker, G.A. Baker, Luminescent Carbon Nanodots: Emergent Nanolights, Angew Chem, 49 (2010) 6726-6744.

    [114] Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, L. Qu, An Electrochemical Avenue to Green-Luminescent Graphene Quantum Dots as Potential Electron-Acceptors for Photovoltaics, Adv Mater, 23 (2011) 776-780.

    [115] D. Pan, J. Zhang, Z. Li, M. Wu, Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots, Adv Mater, 22 (2010) 734-738.

    [116] Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid, Carbon, 50 (2012) 4738-4743.

    [117] G. Bharathi, D. Nataraj, S. Premkumar, M. Sowmiya, K. Senthilkumar, T.D. Thangadurai, O.Y. Khyzhun, M. Gupta, D. Phase, N. Patra, S.N. Jha, D. Bhattacharyya, Graphene quantum dot solid sheets: strong blue-light-emitting & photocurrent-producing band-gap-opened nanostructures, Sci Rep, 7 (2017) 10850.

    [118] K.-Y. Yoon, H.-J. Ahn, M.-J. Kwak, P. Thiyagarajan, J.-H. Jang, Graphene quantum dot-protected cadmium selenide quantum dot-sensitized photoanode for efficient photoelectrochemical cells with enhanced stability and performance, Adv Opt Mater, 3 (2015) 907-912.

    [119] Y. Wang, J. Xie, J. Kang, W. Choi, P. Jangili, B. Zhang, N. Xie, G. Nie, J. He, H. Zhang, L. Liu, J.S. Kim, Smart acid-activatable self-assembly of black phosphorous as photosensitizer to overcome poor tumor retention in photothermal therapy, Adv Funct Mater, 30 (2020) 2003338.

    [120] X. Ji, L. Ge, C. Liu, Z. Tang, Y. Xiao, W. Chen, Z. Lei, W. Gao, S. Blake, D. De, B. Shi, X. Zeng, N. Kong, X. Zhang, W. Tao, Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite for cancer theranostics, Nat Commun, 12 (2021) 1124.

    [121] Y. Chang, Y. Cheng, Y. Feng, H. Jian, L. Wang, X. Ma, X. Li, H. Zhang, Resonance energy transfer-promoted photothermal and photodynamic performance of gold-copper sulfide yolk-shell nanoparticles for chemophototherapy of cancer, Nano Lett, 18 (2018) 886-897.

    [122] K. Jibin, J.S. Prasad, G. Saranya, S.J. Shenoy, K.K. Maiti, R.S. Jayasree, Optically controlled hybrid metamaterial of plasmonic spiky gold inbuilt graphene sheets for bimodal imaging guided multimodal therapy, Biomater Sci, 8 (2020) 3381-3391.

    [123] S. Zackrisson, S. van de Ven, S.S. Gambhir, Light in and sound out: emerging translational strategies for photoacoustic imaging, Cancer Res, 74 (2014) 979-1004.

    [124] S.H. Han, Review of photoacoustic imaging for imaging-guided spinal surgery, Neurospine, 15 (2018) 306-322.

    [125] M. Mehrmohammadi, S.J. Yoon, D. Yeager, S.Y. Emelianov, Photoacoustic imaging for cancer detection and staging, Curr Mol Imaging, 2 (2013) 89-105.

    Chapter 3. References

    [1] L. Cheng, C. Wang, L. Feng, K. Yang, Z. Liu, Functional nanomaterials for phototherapies of cancer, Chem. Rev. 114 (2014) 10869-10939.

    [2] M. K. Gnanasammandhan, N. M. Idris, A. Bansal, K. Huang, Y. Zhang, Near-IR photoactivation using mesoporous silica-coated NaYF4:Yb, Er/Tm upconversion nanoparticles, Nat. Protoc. 11 (2016), 688-713.

    [3] M. Karimi, P. Sahandi Zangabad, S. Baghaee-Ravari, M. Ghazadeh, H. Mirshekari, M. R. Hamblin, Smart nanostructures for cargo delivery: uncaging and activating by light, J. Am. Chem. Soc. 139 (2017) 4584-4610.

    [4] K. F. Chu, D. E. Dupuy, Thermal ablation of tumours: biological mechanisms and advances in therapy, Nat. Rev. Cancer 14 (2014) 199-208.

    [5] L. Zhang, D. Wang, K. Yang, D. Sheng, B. Tan, Z. Wang, H. Ran, H. Yi, Y. Zhong, H. Lin, Y. Chen, Mitochondria-targeted artificial “Nano-RBCs” for amplified synergistic cancer phototherapy by a single NIR irradiation, Adv. Sci. 5 (2018) 1800049.

    [6] W. Li, J. Yang, L. Luo, M. Jiang, B. Qin, H. Yin, C. Zhu, X. Yuan, J. Zhang, Z. Luo, Y. Du, Q. Li, Y. Lou, Y. Qiu, J. You, Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death, Nat. Commun. 10 (2019) 3349-3365.

    [7] B. Du, W. Zhang, C. H. Tung, Layer-by-layer construction of an oxygen generating photo-responsive nanomedicine for enhanced photothermal and photodynamic combination therapy, Chem. Commun. 55 (2019) 5926-5929.

    [8] H. Zhu, P. Cheng, P. Chen, K. Pu, Recent progress in the development of near-infrared organic photothermal and photodynamic nanotherapeutics, Biomater. Sci. 6 (2018) 746-765.

    [9] Q. Cheng, Z. H. Li, Y. X. Sun, X. Z. Zhang, Controlled synthesis of a core-shell nanohybrid for effective multimodal image-guided combined photothermal/photodynamic therapy of tumors, NPG Asia Materials 11 (2019) 63-77.

    [10] C. C. Hung, W. C. Huang, Y. W. Lin, T. W. Yu, H. H. Chen, S. C. Lin, W. H. Chiang H. C. Chiu, Active tumor permeation and uptake of surface charge-switchable theranostic nanoparticles for imaging-guided photothermal/chemo combinatorial therapy, Theranostics 6 (2016) 302-317.

    [11] F. Yan, W. Duan, Y. Li, H. Wu, Y. Zhou, M. Pan, H. Liu, X. Liu, H. Zheng, NIR-laser-controlled drug release from DOX/IR-780-loaded temperature-sensitive-liposomes for chemo-photothermal synergistic tumor therapy, Theranostics 6 (2016) 2337-2351.

    [12] D. Trachootham, J. Alexandre, P. Huang, Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discovery 8 (2009) 579-591.

    [13] Z. Huang, H. Xu, A. D. Meyers, A. I. Musani, L. Wang, R. Tagg, A. B. Barqawi, Y. K. Chen, Photodynamic therapy for treatment of solid tumors-potential and technical challenges, Technol. Cancer Res. Treat 7 (2008) 309-320.

    [14] K. Han, W. Zhang, J. Zhang, Q. Lei, S. Wang, J. Liu, X. Zhang, H. Han, H, Acidity-triggered tumor-targeted chimeric peptide for enhanced intra-nuclear photodynamic therapy, Adv. Funct. Mater. 26 (2016) 4351-4361.

    [15] Z. Luo, H. Tian, L. Liu, Z. Chen, R. Liang, Z. Chen, Z. Wu, A. Ma, M. Zheng, L. Cai, Tumor-targeted hybrid protein oxygen carrier to simultaneously enhance hypoxia-dampened chemotherapy and photodynamic therapy at a single dose, Theranostics 8 (2018) 3584-3596.

    [16] F. Xu, H. Li, Q. Yao, H. Ge, J. Fan, W. Sun, J. Wang, X. Peng, Hypoxia-activated NIR photosensitizer anchoring in the mitochondria for photodynamic therapy, Chem. Sci. 10 (2019) 10586-10594.

    [17] W. C. Huang, M. Y. Shen, H. H. Chen, S. C. Lin, W. H. Chiang, P. H. Wu, C. W. Chang, C. S. Chiang and H. C. Chiu, Monocytic delivery of therapeutic oxygen bubbles for dual-modality treatment of tumor hypoxia, J. Control. Release 220 (2015) 738-750.

    [18] C. Zhao, H. Deng, J. Xu S. Li, L. Zhong, L. Shao, Y. Wu, X. J. Liang, "Sheddable" PEG-lipid to balance the contradiction of PEGylation between long circulation and poor uptake, Nanoscale 8 (2016) 10832-10842.

    [19] W. C. Huang, S. H. Chen, W. H. Chiang, C. W. Huang, C. L. Lo, C. S. Chern, H. C. Chiu, Tumor microenvironment-responsive nanoparticle delivery of chemotherapy for enhanced selective cellular uptake and transportation within tumor, Biomacromolecules 17 (2016) 3883-3892.

    [20] H. Li, Y. Chen, Z. Li, X. Li, Q. Jin, J. Ji, Hemoglobin as a smart pH-Sensitive nanocarrier to achieve aggregation enhanced tumor retention, Biomacromolecules 19 (2018) 2007-2013.

    [21] I. L. Lu, T. I. Liu, H. C. Lin, S. H. Chang, C. L. Lo, W. H. Chiang, H. C. Chiu, R780-loaded zwitterionic polymeric nanorparticles with acidity-Induced agglomeration for enhanced tumor retention, Eur. Polym. J. 122 (2020) 109400.

    [22] Z. Yang, N. Sun, R. Cheng, C. Zhao, Z. Liu, X. Li, J. Liu, Z. Tian, pH-multistage responsive micellar system with charge-switch and PEG layer detachment for co-delivery of paclitaxel and curcumin to synergistically eliminate breast cancer stem cells, Biomaterials 147 (2017) 53-67.

    [23] T. I. Liu, T. Y. Lu, S. H. Chang, M. Y. Shen, H. C. Chiu*, Dual stimuli-guided lipid-based delivery system of cancer combination therapy, J. Control. Release 318 (2020) 16-24.

    J. Zhou, T. Li, C. Zhang, J. Xiao, D. Cui, Y. Cheng, Charge-switchable nanocapsules with multistage pH-responsive behaviours for enhanced tumour-targeted chemo/photodynamic therapy guided by NIR/MR imaging, Nanoscale 10 (2018) 9707-9719.

    [24] E. C. Dreaden, S. W. Morton, K. E. Shopsowitz, J. H. Choi, Z. J. Deng, N. J. Cho, P. T. Hammond, Bimodal tumor-targeting from microenvironment responsive hyaluronan layer-by-layer (LbL) nanoparticles, ACS Nano 8 (2014) 8374-8382.

    [25] L. Zhong, L. Xu, Y. Liu, Q. Li, D. Zhao, Z. Li, H. Zhang, H. Zhang, Q. Kan, Y. Wang, J. Sun, Z. He, Transformative hyaluronic acid-based active targeting supramolecular nanoplatform improves long circulation and enhances cellular uptake in cancer therapy, Acta Pharmaceutica Sinica B 9 (2019) 397-409.

    [26] M. O. Durymanov, A. A. Rosenkranz, A. S. Sobolev, Current approaches for improving intratumoral accumulation and distribution of nanomedicines, Theranostics 5 (2015) 1007-1020.

    [27] C. Grapentin, S. Barnert, R. Schubert, Monitoring the stability of perfluorocarbon nanoemulsions by cryo-TEM image analysis and dynamic light scattering, PLoS ONE 10 (2015), e.0130674.

    [28] Y. Hu, Y. Wang, J. Jiang, B. Han, S. Zhang, K. Li, S. X. Ge, Y. Liu, Preparation and characterization of novel perfluorooctyl bromide nanoparticle as ultrasound contrast agent via layer-by-layer self-assembly for folate-receptor-mediated tumor imaging, BioMed Research International. 2016 (2016), 6381464.

    [29] S. Y. Lin, R. Y. Huang, W. C. Liao, C. C. Chuang, C.W. Chang, Multifunctional PEGylated albumin/IR780/iron oxide nanocomplexes for cancer photothermal therapy and MR imaging, Nanotheranostics 2 (2018) 106-116.

    [30] K. Wang, Y. Zhang, J. Wang, A. Yuan, M. Sun, J. Wu, Y. Hu, Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy, Sci. Rep. 6 (2016) 27421.

    [31] G. Yang, J. Tian, C. Chen, D. Jiang, Y. Xue, C. Wang, Y. Gao, W. Zhang, An oxygen self-sufficient NIR-responsive nanosystem for enhanced PDT and chemotherapy against hypoxic tumors, Chem. Sci. 10 (2019) 5766-5772.

    [32] Y. C. Tsai, P. Vijayaraghavan, W. H. Chiang, H. H. Chen, T. I. Liu, M. Y. Shen, A. Omoto, M. Kamimura, K. Soga, H. C. Chiu, Targeted delivery of functionalized upconversion nanoparticles for externally triggered photothermal/photodynamic therapies of brain glioblastoma, Theranostics 8 (2018) 1435-1448.

    [33] X. Zhang, R. Zhang, J. Huang, M. Luo, X. Chen, Y. Kang, J. Wu, Albumin enhances PTX delivery ability of dextran NPs and therapeutic efficacy of PTX for colorectal cancer, J. Mater. Chem. B. 7 (2019) 3537-3545.

    [34] J. Yang, W. Li, L. Luo, M. Jiang, C. Zhu, B. Qin, H. Yin, X. Yuan, X. Yin, J. Zhang, Z. Luo, Y. Du, J. You, Hypoxic tumor therapy by hemoglobin-mediated drug delivery and reversal of hypoxia-induced chemoresistance, Biomaterials 182 (2018) 145-156.

    [35] M. Triesscheijn, M. Ruevekamp, R. Out, T.J. Van Berkel, J. Schellens, P. Baas, F.A. Stewart, The pharmacokinetic behavior of the photosensitizer meso-tetra-hydroxyphenyl-chlorin in mice and men, Cancer Chemother. Pharmacol. 60 (2007) 113–122.

    [36] Y. Liu, L. Scrivano, J.D. Peterson, M.H.A.M. Fens, I.B. Hernández, B. Mesquita, J.S. Toraño, W.E. Hennink, C.F. van Nostrum, S. Oliveira, EGFR-targeted nanobody functionalized polymeric micelles loaded with mTHPC for selective photodynamic therapy, Mol. Pharm. 17 (2020) 1276–1292.

    [37] C.S. Jin, J.F. Lovell, J. Chen, G. Zheng, Ablation of hypoxic tumors with doseequivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly, ACS Nano 7 (2013) 2541–2550.

    [38] D. Gao, X. Guo, X. Zhang, S. Chen, Y. Wang, T. Chen, G. Huang, Y. Gao, Z. Tian, Z. Yang, Multifunctional phototheranostic nanomedicine for cancer imaging and treatment, Mater. Today Bio 5 (2020) 100035.

    Chapter 4. References

    [1] P. Vallance, Nitric oxide: therapeutic opportunities, Fundam. Clin. Pharmacol 17 (2003) 1-10.

    [2] A.B. Levine, D. Punihaole, T.B. Levine, Characterization of the role of nitric oxide and its clinical applications, Cardiology 122 (2012) 55-68.

    [3] A.W. Carpenter, M.H. Schoenfisch, Nitric oxide release: part II. therapeutic applications, Chem. Soc. Rev. 41 (2012) 3742-3752.

    [4] D.D. Thomas, Breathing new life into nitric oxide signaling: A brief overview of the interplay between oxygen and nitric oxide, Redox Biol. 5 (2015) 225-233.

    [5] D. Hirst, T. Robson, Targeting nitric oxide for cancer therapy, J Pharm Pharmacol. 59 (2007) 3-13.

    [6] T. Feng, J. Wan, P. Li, H. Ran, H. Chen, Z. Wang, L. Zhang, A novel NIR-controlled NO release of sodium nitroprusside-doped Prussian blue nanoparticle for synergistic tumor treatment, Biomaterials 214 (2019) 119213.

    [7] W. Islam, J. Fang, T. Imamura, T. Etrych, V. Subr, K. Ulbrich, H. Maeda, Augmentation of the enhanced permeability and retention effect with nitric oxide-generating agents improves the therapeutic effects of nanomedicines, Mol. Cancer Ther. 17 (2018) 2643-2653.

    [8] H. Alimoradi, K. Greish, A.B. Gamble, G.I. Giles, Controlled Delivery of Nitric Oxide for Cancer Therapy, Pharm. Nanotechnol. 7 (2019) 279-303.

    [9] T. Yang, A.N. Zelikin, R. Chandrawati, Progress and promise of nitric oxide-releasing platforms, Adv. Sci. (Weinh.) 5 (2018) 1701043.

    [10] J. Kim, G. Saravanakumar, H.W. Choi, D. Park, W.J. Kim, A platform for nitric oxide delivery, J. Mater. Chem. B 2 (2014) 341-356.

    [11] Y. Yang, Z. Huang, L.-L. Li, Advanced nitric oxide donors: chemical structure of NO drugs, NO nanomedicines and biomedical applications, Nanoscale 13 (2021) 444-459.

    [12] S.P. Nichols, W.L. Storm, A. Koh, M.H. Schoenfisch, Local delivery of nitric oxide: targeted delivery of therapeutics to bone and connective tissues, Adv. Drug Deliv. Rev. 64 (2012) 1177-1188.

    [13] P.G. Wang, M. Xian, X. Tang, X. Wu, Z. Wen, T. Cai, A.J. Janczuk, Nitric oxide donors:  chemical activities and biological applications, Chem. Rev. 102 (2002) 1091-1134.

    [14] H. Yin, X. Guan, H. Lin, Y. Pu, Y. Fang, W. Yue, B. Zhou, Q. Wang, Y. Chen, H. Xu, Nanomedicine-enabled photonic thermogaseous cancer Therapy, Adv. Sci. (Weinh.) 7 (2020) 1901954.

    [15] X. Zhang, J. Du, Z. Guo, J. Yu, Q. Gao, W. Yin, S. Zhu, Z. Gu, Y. Zhao, Efficient near infrared light triggered nitric oxide release nanocomposites for sensitizing mild photothermal therapy, Adv. Sci. (Weinh.) 6 (2019) 1801122.

    [16] J. Sun, Y. Fan, W. Ye, L. Tian, S. Niu, W. Ming, J. Zhao, L. Ren, Near-infrared light triggered photodynamic and nitric oxide synergistic antibacterial nanocomposite membrane, Chem. Eng. J. 417 (2021) 128049.

    [17] G. Wei, G. Yang, B. Wei, Y. Wang, S. Zhou, Near-infrared light switching nitric oxide nanoemitter for triple-combination therapy of multidrug resistant cancer, Acta Biomater. 100 (2019) 365-377.

    [18] Z. Du, Y. Mao, P. Zhang, J. Hu, J. Fu, Q. You, J. Yin, TPGS–galactose-modified polydopamine co-delivery nanoparticles of nitric oxide donor and doxorubicin for targeted chemo–photothermal therapy against drug-resistant hepatocellular carcinoma, ACS Appl. Mater. Interfaces 13 (2021) 35518-35532.

    [19] J. Fan, N. He, Q. He, Y. Liu, Y. Ma, X. Fu, Y. Liu, P. Huang, X. Chen, A novel self-assembled sandwich nanomedicine for NIR-responsive release of NO, Nanoscale 7 (2015) 20055-20062.

    [20] M.K. Thakur, C.-Y. Fang, Y.-T. Yang, T.A. Effendi, P.K. Roy, R.-S. Chen, K.K. Ostrikov, W.-H. Chiang, S. Chattopadhyay, Microplasma-enabled graphene quantum dot-wrapped gold nanoparticles with synergistic enhancement for broad band photodetection, ACS Appl. Mater. Interfaces 12 (2020) 28550-28560.

    [21] B. Du, L. Lin, W. Liu, S. Zu, Y. Yu, Z. Li, Y. Kang, H. Peng, X. Zhu, Z. Fang, Plasmonic hot electron tunneling photodetection in vertical Au–graphene hybrid nanostructures, Laser Photonics Rev. 11 (2017) 1600148.

    [22] S. Chen, Z.L. Wang, J. Ballato, S.H. Foulger, D.L. Carroll, Monopod, bipod, tripod, and tetrapod gold nanocrystals, J. Am. Chem. Soc. 125 (2003) 16186-16187.
    [23] C. Xu, K. Pu, Second near-infrared photothermal materials for combinational nanotheranostics, Chem. Soc. Rev. 50 (2021) 1111-1137.

    [24] D. Yongqiang, S. Jingwei, C. Congqiang, H. Li, W. Ruixue, C.Yuwu, L. Xiaomei, G. Chen, Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid, Carbon 50 (2012) pp. 4738-4743.

    [25] N.G. Bastús, J. Comenge, V. Puntes, Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus ostwald ripening, Langmuir 27 (2011) 11098-11105.

    [26] H. Yuan, C.G. Khoury, H. Hwang, C.M. Wilson, G.A. Grant, T. Vo-Dinh, Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging, Nanotechnology 23 (2012) 075102.

    [27] N. Gong, X. Ma, X. Ye, Q. Zhou, X. Chen, X. Tan, S. Yao, S. Huo, T. Zhang, S. Chen, X. Teng, X. Hu, J. Yu, Y. Gan, H. Jiang, J. Li, X.J. Liang, Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment, Nat. Nanotechnol. 14 (2019) 379-387.

    28 ] J. Liu, O. Bibari, P. Mailley, J. Dijon, E. Rouvière, F. Sauter-Starace, P. Caillat, F. Vinet, G. Marchand, Stable non-covalent functionalisation of multi-walled carbon nanotubes by pyrene–polyethylene glycol through π–π stacking, New J Chem. 33 (2009) 1017-1024.

    [29] X. Miao, S. Wen, Y. Su, J. Fu, X. Luo, P. Wu, C. Cai, R. Jelinek, L.-P. Jiang, J.-J. Zhu, Graphene quantum dots wrapped gold nanoparticles with integrated enhancement mechanisms as sensitive and homogeneous substrates for surface-enhanced raman spectroscopy, Anal. Chem. 91 (2019) 7295-7303.

    [30] P. Luo, C. Li, G. Shi, Synthesis of gold@carbon dots composite nanoparticles for surface enhanced Raman scattering, Phys. Chem. Chem. Phys., 14 (2012) 7360-7366.

    [31] N.T.N. Anh, R.-a. Doong, One-step synthesis of size-tunable gold@sulfur-doped graphene quantum dot nanocomposites for highly selective and sensitive detection of nanomolar 4-nitrophenol in aqueous solutions with complex matrix, ACS Appl. Nano Mater. 1 (2018) 2153-2163.

    [32] M. Sankar, Q. He, M. Morad, J. Pritchard, S.J. Freakley, J.K. Edwards, S.H. Taylor, D.J. Morgan, A.F. Carley, D.W. Knight, C.J. Kiely, G.J. Hutchings, Synthesis of stable ligand-free gold–palladium nanoparticles using a simple excess anion method, ACS Nano 6 (2012) 6600-6613.

    [33] G. Jalani, M. Cerruti, Nano graphene oxide-wrapped gold nanostars as ultrasensitive and stable SERS nanoprobes, Nanoscale 7 (2015) 9990-9997.

    [34] G.L. Hong, H.L. Zhao, H.H. Deng, H.J. Yang, H.P. Peng, Y.H. Liu, W. Chen, Fabrication of ultra-small monolayer graphene quantum dots by pyrolysis of trisodium citrate for fluorescent cell imaging, Int. J. Nanomedicine 13 (2018) 4807-4815.

    [35] X. Hai, X. Lin, X. Chen, J. Wang, Highly selective and sensitive detection of cysteine with a graphene quantum dots-gold nanoparticles based core-shell nanosensor, Sens. Actuators B Chem. 257 (2018) 228-236.
    [36] R.J. Chen, Y. Zhang, D. Wang, H. Dai, Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization, J. Am. Chem. Soc. 123 (2001) 3838-3839.

    [37] D.Y. Kim, T. Yu, E.C. Cho, Y. Ma, O.O. Park, Y. Xia, Synthesis of gold nano-hexapods with controllable arm lengths and their tunable optical properties, Angew. Chem. Int. Ed. Engl 50 (2011) 6328-6331.

    [38] X. Han, Y. Xu, Y. Li, X. Zhao, Y. Zhang, H. Min, Y. Qi, G.J. Anderson, L. You, Y. Zhao, G. Nie, An extendable star-like nanoplatform for functional and anatomical imaging-guided photothermal oncotherapy, ACS Nano 13 (2019) 4379-4391.

    [39] X. Zhang, L. An, Q. Tian, J. Lin, S. Yang, Tumor microenvironment-activated NIR-II reagents for tumor imaging and therapy, J. Mater. Chem. B 8 (2020) 4738-4747.

    [40] R. García-Álvarez, L. Chen, A. Nedilko, A. Sánchez-Iglesias, A. Rix, W. Lederle, V. Pathak, T. Lammers, G. von Plessen, K. Kostarelos, L.M. Liz-Marzán, A.J.C. Kuehne, D.N. Chigrin, Optimizing the geometry of photoacoustically active gold nanoparticles for biomedical imaging, ACS Photonics 7 (2020) 646-652.

    [41] S.K. Cushing, J. Li, F. Meng, T.R. Senty, S. Suri, M. Zhi, M. Li, A.D. Bristow, N. Wu, Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor, J. Am. Chem. Soc. 134 (2012) 15033-15041.

    [42] S.K. Cushing, N. Wu, Plasmon-enhanced solar energy harvesting, Interface 22 (2013) 63-67.

    [43] H. Kojima, Y. Urano, K. Kikuchi, T. Higuchi, Y. Hirata, T. Nagano, Fluorescent indicators for imaging nitric oxide production, Angew. Chem. Int. Ed. Engl 38 (1999) 3209-3212.

    [44] J.S. Stamler, Redox signaling: nitrosylation and related target interactions of nitric oxide, Cell 78 (1994) 931-936.

    [45] K. Aquilano, S. Baldelli, M.R. Ciriolo, Glutathione: new roles in redox signaling for an old antioxidant, Front. Pharmacol. 5 (2014) 196.

    [46] A.E. Maciag, R.J. Holland, Y.S. Robert Cheng, L.G. Rodriguez, J.E. Saavedra, L.M. Anderson, L.K. Keefer, Nitric oxide-releasing prodrug triggers cancer cell death through deregulation of cellular redox balance, Redox Biol. 1 (2013) 115-124.

    [47] Y. Deng, F. Jia, S. Chen, Z. Shen, Q. Jin, G. Fu, J. Ji, Nitric oxide as an all-rounder for enhanced photodynamic therapy: Hypoxia relief, glutathione depletion and reactive nitrogen species generation, Biomaterials 187 (2018) 55-65.

    [48] B. Zhao, Y. Wang, X. Yao, D. Chen, M. Fan, Z. Jin, Q. He, Photocatalysis-mediated drug-free sustainable cancer therapy using nanocatalyst, Nat. Commun. 12 (2021) 1345.

    [49] P. Wang, X. Wang, Q. Luo, Y. Li, X. Lin, L. Fan, Y. Zhang, J. Liu, X. Liu, Fabrication of red blood cell-based multimodal theranostic probes for second near-infrared window fluorescence imaging-guided tumor surgery and photodynamic therapy, Theranostics 9 (2019) 369-380.

    [50] C.C. Hung, W.C. Huang, Y.W. Lin, T.W. Yu, H.H. Chen, S.C. Lin, W.H. Chiang, H.C. Chiu, Active tumor permeation and uptake of surface charge-switchable theranostic nanoparticles for imaging-guided photothermal/chemo combinatorial therapy, Theranostics 6 (2016) 302-317.

    [51] R. Radi, Nitric oxide, oxidants, and protein tyrosine nitration, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 4003-4008.

    [52] K. Zhang, H. Xu, X. Jia, Y. Chen, M. Ma, L. Sun, H. Chen, Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor, ACS Nano 10 (2016) 10816-10828.

    [53] Y.C. Sung, P.R. Jin, L.A. Chu, F.F. Hsu, M.R. Wang, C.C. Chang, S.J. Chiou, J.T. Qiu, D.Y. Gao, C.C. Lin, Y.S. Chen, Y.C. Hsu, J. Wang, F.N. Wang, P.L. Yu, A.S. Chiang, A.Y. Wu, J.J. Ko, C.P. Lai, T.T. Lu, Y. Chen, Delivery of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies, Nat. Nanotechnol. 14 (2019) 1160-1169.

    [54] L.A. Ridnour, J.S. Isenberg, M.G. Espey, D.D. Thomas, D.D. Roberts, D.A. Wink, Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 13147-13152.

    [55] J.S. Isenberg, L.A. Ridnour, E.M. Perruccio, M.G. Espey, D.A. Wink, D.D. Roberts, Thrombospondin-1 inhibits endothelial cell responses to nitric oxide in a cGMP-dependent manner, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 13141-13146.

    QR CODE