簡易檢索 / 詳目顯示

研究生: 康育齊
Kang, Yu-Chi
論文名稱: 以電容回授控制進行數位微液滴之致動及操作
Actuation and Manipulation for Digital-Micro-Droplet with Real Time Capacitive Feedback Control
指導教授: 陳榮順
Chen, RongShun
口試委員: 賴梅鳳
陳宗麟
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 80
中文關鍵詞: 液滴回授控制電濕潤電容式
外文關鍵詞: EWOD, Feedback Control, Micro Droplet, Capacitive
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在生醫檢測上,為了達到減少試劑用量和實現快速及多功能性平行檢測之目的,微小化已是不可避免的趨勢,各項生醫檢測用途之大型機台預期未來可被生醫晶片部分取代。整合移動、混和、切割、產生、取樣等功能後,更可以實現實驗室晶片(Lab on a Chip)的概念。
    本研究旨在實現開放式數位微流體回授控制系統,利用導線式(Catenary)數位微流體元件之感測電容值作為回授機制,可以實現液滴即時位置判斷及控制處理來避免因製程、人為或環境等因素不完美所造成無法順利操作之情形,並於液滴移動困難時以重複驅動配合增加施加電壓之方式進行補償,以提升控制之可靠度。
    本研究完成導線式數位微流體元件之晶片製程,並以自行設計之載台進行液滴操控實驗,配合電容回授電路及LabVIEW人機介面控制器,最後展示全系統採自動化電容回授控制後之成果,並探討此系統的未來展望,以期成為未來生醫研究領域之利器。


    摘要 I 致謝 II 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 數位微流體 2 1.3 研究動機 7 1.4 文獻回顧 8 1.4.1 開放式數位微流體 9 1.4.2 回授控制 16 1.4.2.1 液滴產生回授控制 17 1.4.2.2 液滴混和回授控制 19 1.4.2.3 液滴位置回授控制 20 1.5 本文大綱 23 第二章 液滴驅動理論分析 24 2.1 楊格方程式(Young’s Equation) 24 2.2 黎普曼方程式(Lippmann Equation) 25 2.3 黎普曼-楊格方程式(Lippmann -Young Equation) 27 2.4 液滴驅動力 28 2.5 導線最佳擺置探討 29 2.6 液滴移動時間及速度推算 30 第三章 數位微流體元件與製程 34 3.1 開放式數位微流體製程 34 3.2 電極設計 37 3.3 製作完成之電極元件 40 3.4 導線測試 42 第四章 實驗架設與實驗成果 46 4.1 元件載台及置線台設計 46 4.2 周邊硬體架設 49 4.2.1 數位資料擷取卡 50 4.2.2 繼電器電路 51 4.2.3 電源供應器 52 4.2.4 電容回授電路 53 4.2.4.1 I2C/SPI/SMBus 介面卡 53 4.2.4.2 電容量測電路 54 4.3 數位微流體元件移動測試 59 4.4 電容量測結果 64 4.5 控制器設計 67 4.6 回授控制 69 第五章 結論與未來工作 73 5.1 結論 73 5.2 未來工作 74 參考文獻 75

    [1] R. P. Feynman, "There's Plenty of Room at the Bottom," Engineering and Science, 1960.
    [2] A. Manz, N. Graber, and H. M. Widmer, "Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sensing," Sensors and Actuators B: Chemical, vol. 1, pp. 244-248, 1990.
    [3] F. W. Went, "The Size of Man," American Scientist, vol. 56, pp. 400-413, 1968.
    [4] J. T. Yang, J. C. Chen, K. J. Huang, and J. A. Yeh, "Droplet Manipulation on a Hydrophobic Textured Surface with Roughened Patterns," Microelectromechanical Systems, Journal of, vol. 15, pp. 697-707, 2006.
    [5] K. Ichimura, S. K. Oh, and M. Nakagawa, "Light-Driven Motion of Liquids on a Photoresponsive Surface," Science, vol. 288, pp. 1624-1626, June 2, 2000 2000.
    [6] P. Y. Chiou, H. j. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, "Light Actuation of Liquid by Optoelectrowetting," Sensors and Actuators A: Physical, vol. 104, pp. 222-228, 2003.
    [7] A. A. Darhuber, J. P. Valentino, S. M. Troian, and S. Wagner, "Thermocapillary Actuation of Droplets on Chemically Patterned Surfaces by Programmable Microheater Arrays," Microelectromechanical Systems, Journal of, vol. 12, pp. 873-879, 2003.
    [8] N. T. Nguyen, K. M. Ng, and X. Huang, "Manipulation of Ferrofluid Droplets Using Planar Coils," Applied Physics Letters, vol. 89, pp. 052509-052509-3, 2006.
    [9] N. T. Nguyen, A. Beyzavi, K. Ng, and X. Y. Huang, "Kinematics and Deformation of Ferrofluid Droplets Under Magnetic Actuation," Microfluidics and Nanofluidics, vol. 3, pp. 571-579, 2007.
    [10] S. K. Cho, H. j. Moon, and C. J. Kim, "Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits," Microelectromechanical Systems, Journal of, vol. 12, pp. 70-80, 2003.
    [11] U. C. Yi and C. J. Kim, "Characterization of Electrowetting Actuation on Addressable Single-Side Coplanar Electrodes," Journal of Micromechanics and Microengineering, vol. 16, pp. 2053-2059, 2006.
    [12] T. T. Wang, P. W. Huang, and S. K. Fan, "Droplets Oscillation and Continuous Pumping by Asymmetric Electrowetting," MEMS 2006: 19th IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest, 2006, pp. 174-177.
    [13] Y. F. Li, Y. Mita, L. I. Haworth, W. Parkes, M. Kubota, and A. J. Walton, "Test Structure for Characterizing Low Voltage Coplanar EWOD System," IEEE Transactions on Semiconductor Manufacturing, vol. 22, pp. 88-95, Feb 2009.
    [14] C. G. Cooney, C. Y. Chen, M. R. Emerling, A. Nadim, and J. D. Sterling, "Electrowetting Droplet Microfluidics on a Single Planar Surface," Microfluidics and Nanofluidics, vol. 2, pp. 435-446, 2006.
    [15] M. G. Lippmann, "Relations Entre les Phénomènes Electriques et Capillaires," Annales des Chimie et des Physique, vol. 5, pp. 494-549, 1875.
    [16] S. K. Fan, H. Yang, T. T. Wang, and W. Hsu, "Asymmetric Electrowetting-Moving Droplets by a Square Wave," Lab on a Chip, vol. 7, p. 1330, 2007.
    [17] 何銘浚, "微液珠之驅動與控制器設計," 碩士班, 動力機械工程研究所, 清華大學, 2009.
    [18] J. Berthier, Microdrops and Digital Microfluidics. Norwich, N.Y.: Oxford : Elsevier Science 2008.
    [19] Y. Fouillet, H. Jeanson, I. Chartier, A. Buguin, and P. Silberzan, "Déplacement de Gouttes sur un Microcaténaire," La Houille Blanche, pp. 37-42, 2003.
    [20] A. Quinn, R. Sedev, and J. Ralston, "Influence of the Electrical Double Layer in Electrowetting," Journal of Physical Chemistry B, vol. 107, pp. 1163-1169, Feb 2003.
    [21] E. Seyrat and R. A. Hayes, "Amorphous Fluoropolymers as Insulators for Reversible Low-Voltage Electrowetting," Journal of Applied Physics, vol. 90, pp. 1383-1386, 2001.
    [22] M. Abdelgawad, P. Park, and A. R. Wheeler, "Optimization of Device Geometry in Single-Plate Digital Microfluidics," Journal of Applied Physics, vol. 105, pp. 094506-7, 2009.
    [23] H. Ren, R. B. Fair, and M. G. Pollack, "Automated On-Chip Droplet Dispensing with Volume Control by Electro-Wetting Actuation and Capacitance Metering," Sensors and Actuators B: Chemical, vol. 98, pp. 319-327, 2004.
    [24] J. Gong and C. J. Kim, "All-Electronic Droplet Generation On-Chip with Real-Time Feedback Control for EWOD Digital Microfluidics," Lab on a Chip, vol. 8, p. 898, 2008.
    [25] M. J. Schertzer, R. Ben Mrad, and P. E. Sullivan, "Using Capacitance Measurements in EWOD Devices to Identify Fluid Composition and Control Droplet Mixing," Sensors and Actuators B: Chemical, vol. 145, pp. 340-347, 2010.
    [26] H. Zeng and Y. Zhao, "Design and Implementation of Liquid Droplet Based Motion Sensing," Actuators and Microsystems Conference, 2009, pp. 680-683.
    [27] S. C. C. Shih, R. Fobel, P. Kumar, and A. R. Wheeler, "A Feedback Control System for High-Fidelity Digital Microfluidics," Lab on a Chip, 2011.
    [28] H. Matsumoto and J. E. Colgate, "Preliminary Investigation of Micropumping Based on Electrical Control of Interfacial Tension," An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots. IEEE, 1990, pp. 105-110.
    [29] A. W. Adamson and A. P. Gast, Physical Chemistry of Surfaces, 6th ed. ed. New York ; Chichester: Wiley, 1997.
    [30] T. Yasuda, K. Suzuki, and I. Shimoyama, "Automatic Transportation of a Droplet on a Wettability Gradient Surface," 7th lnternatonal Conference on Miniaturized Chemical and Blochemlcal Analysts Systems, pp. 1129-1132, 2003.
    [31] J. Berthier, P. Dubois, P. Clementz, P. Claustre, C. Peponnet, and Y. Fouillet, "Actuation Potentials and Capillary Forces in Electrowetting Based Microsystems," Sensors and Actuators A: Physical, vol. 134, pp. 471-479, 2007.
    [32] Y. H. Chang, G. B. Lee, F. C. Huang, Y. Y. Chen, and J. L. Lin, "Integrated Polymerase Chain Reaction Chips Utilizing Digital Microfluidics," Biomedical Microdevices, vol. 8, pp. 215-225, 2006.
    [33] P. Dubois, G. Marchand, Y. Fouillet, J. Berthier, T. Douki, F. Hassine, S. Gmouh, and M. Vaultier, "Ionic Liquid Droplet as e-Microreactor," Analytical Chemistry, vol. 78, pp. 4909-4917, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE