研究生: |
徐俊成 Chun-Cheng Hsu |
---|---|
論文名稱: |
化學微縮技術應用於電子束微影製程與電子束阻劑線寬變異原因及其微波消化效率之探討 Study of Resist Scaling Down and Characterization Technology |
指導教授: |
朱鐵吉
Tieh-Chi Chu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 192 |
中文關鍵詞: | 化學微縮技術 、電子束微影製程 、鹼基污染物質 、微波消化 、光阻劑 |
外文關鍵詞: | chemical shrink technique, electron beam lithography, ariborne molecular contamination, microwave digestion, photoresist, RELACS |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究已經證實化學微縮製程應用在電子束微影製程是十分可行的,化學微縮製程是利用阻劑中的光酸來催化學微縮試劑,使之產生交鏈反應(crosslinking reaction),在阻劑形成新的側壁,達到圖形微縮的目的。藉由控制化學微縮製程步驟中的烘烤溫度與時間,可以得到80 nm的接觸洞圖形(contact hole, C/H)。微縮製程的延遲時間,並不會對於微縮效率或是製程上造成任何的影響,本研究還發現,減少某些化學微縮製程的烘烤步驟,甚至會提高化學微縮製程的微縮效率而且並不會對於製程的穩定性上有所影響。
隨著線寬的縮小,對於線寬變異的容忍度也就越來越小,在電子束微影製程中,因為曝後烤延遲時間的增加,而造成電子束線寬的變化,這種效應稱之為大氣延遲效應(atmospheric delay effect, ADE),當延遲的時間超過30分鐘後,線寬的變化已經超過製程所能容忍的誤差範圍,而造成線寬改變的原因,就是因為阻劑受到無塵室中的空氣傳播分子污染物(airborne molecular contaminations, AMC)所污染,因而造成阻劑特性改變。在本研究中發現,利用氣相層析質譜儀可以有效的分析出無塵室中的空氣傳播的分子污染物並且加以比對出污染物質的物種,因而能夠作為防治污染物質的依據。
如果阻劑受到金屬雜質污染,則這些金屬雜質在製程中會進入元件造持元件電性的退化,因此,對於阻劑的品質管理也是很重要的。目前最常使用微波消化作為阻劑樣品分析的前處理步驟,而影響微波消化的因素有下列幾點:1、溫度,2、酸液種類,3、樣品種類,4、消化酸液體積,5、消化持續時間,6、樣品重量。本研究中詳細的探討了每個條件對於微波消化效率的影響,其中微波消化的溫度與消化酸液的種類,對於消化效率的影響是最為重要。
In this study, we had been proved the application of chemical shrink technique in the electron shaped beam lithography is practicable. The chemical shrink reaction is catalyzed by the photoacid in the resist. During the mixing bake step, the cross-linker undergoes crosslinked reaction with the polymer in shrink agent. The new crosslinked material forms aside the sidewall of the resist pattern. The baking temperature and baking time of the shrink process control the shrink ratio. In a well-controlled situation, the shrink ratio could reach 60% as well as the shrinkage is 60 nm. It could enhance the shrink ratio by omitting the soft bake step of the shrink process, moreover, it's won't cause any influence to the stability of the shrink process.
According the critical dimension reducing, the tolerance of the pattern width variation is also contraction. The time between the exposure step and post exposure bake is called the atmospheric delay effect (ADE). It cause serious problem to the resist pattern. When the atmospheric delay is over 30 min, it will make the dimension shifting out of the process window. The main reason, which causes the atmospheric delay effect, is the resist pattern is polluted by the airborne molecular contamination (AMC). In this study, it is effective to identify the individual molecular of these contaminations by using the gas chromatographic mass spectrometer (GC-MS). These data could help the process engineer to prevent the contamination.
If the photoresist contains the metal impurity, these impurities will migrate into the device during the photolithographic process, and cause the electric property degrading. For this reason, it is important to insurance the quality of the photoresist. At Present, the microwave-assisted digestion is the most common pre-treatment method to sample analysis. There is several parameters will influence the microwave-assisted digestion ratio, including: digestion temperature, digesting solution type, sample type, volume of digesting solution, digestion holding time and sample weight. In this study, we had investigated the influence of the digestion ratio to these factors. The digestion temperature and the digesting solution type are the most important factor to the digestion ratio.
1. C. Y. Chang and S. M. Sze, ULSI Devices, Chapter 1, Wiley-Interscience, New York, 2000.
2. Dennis D. Buss, Technology in the Internet Era, SPIE Vol.4343, 1-11 (2001)
3. Hong Xiao, Introduction to Semiconductor Manufacturing Technology, Chapter 6, Prentice Hall, New Jersey, 2001.
4. 張俊彥,鄭晃忠,積體電路製程及設備技術手冊,初版,經濟部技術處發行,台北,1997。
5. 柯富祥、蔡輝嘉,"積體電路製程用光阻的發展現況",電子月刊,第五卷第一期,1999。
6. 陳學禮、施明昌、謝境峰,"利用多層底部抗反射層解決ArF微影技術之光阻受鹼性污染問題",毫微米通訊,第八卷第四期,38-43,2001。
7. D. A. Kinkead, W. Goodwin and K. Turnquest, "Modeling and Controlling the Effects of Base Contamination in DUV Lithography Resists", Micro, 71-84, October 2000.
8. D. Ruede, M. Ercken and T. Borgers, "The impact of Airborne Molecular Bases on DUV Photoresists", Solid State Tech., 63-70, August 2001.
9. M. Y. Wang, F. H. Ko, T. K. Wang, C. C. Yang and T. Y. Huang, "Characterization and Modeling of Out-diffusion of Manganese and Zinc Impurities from Deep Ultraviolet Photoresist", Journal of the Electrochemical , 146(9) 3455-3460 (1999)
10. 紀柏亨、楊末雄、孫毓璋,"微波消化之方法與應用",中國化學,第56卷第四期,269-284,1998。
11. Jan M. Rabaey, Digital Integrated Circuit, Chapter1, Prentice Hall, New Jersey, 1996.
12. The International Technology Roadmap for Semiconductor (NTRS), Semiconductor Industry Association (SIA), Santa Clara, CA, 2001.
13. T. Terasawa, "Subwavelength Lithography (PSM, OPC)", IEEE Design Automation Conference, 295 -300 (2000)
14. R. M. von Bunau and H. Fukuda, "Printing Isolated Features with k1=0.2 Using Multiple-Pupil Exposure", Jpn. J. Appl. Phys. Vol. 40, 419-425 (2001)
15. M. D. Levenson, N. S. Viswanathan and R. A. Simpson, "Improving Resolution in Photolithography with a Phase-Shifting Mask", IEEE Trans. Electron Devices, Vol. ED-29, 1828-1836 (1982)
16. J. D. Plummer, M. Deal, P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling, Chapter 5, Prentice Hall, New Jersey, 2000.
17. B. J. Lin, "Phase-Shifting Masks Gain in Edge", IEEE Circuits and Devices, Vol. 9, No.2, 28-35 (1993)
18. S. Nakao, A. Nakae, A. Yamaguchi, H. Kimura, Y. Ohno, Y. Matsui and M Hirayama, Ŕ.12μm Hole Pattern Formation by KrF Lithography for Giga Bit DRAM", IEDM Tech. Dig., 61-64 (1996)
19. C. Romeo, P. Canestrari, A. Fiorino, M. Hasegawa, K. Saitoh and A. Suzuki, "IDEAL Double Exposure Method for Poly-level Structures", SPIE Vol. 4000, 240-250 (2000)
20. S. W. Lee, D. H. Chung, I. G. Shin, Y. H. Kim, S. W. Choi, W. S. Han and J. M. Sohn, "Doubly Exposed Patterning Using Mutually One-pitch Shifted Alternating Phase Shift Masks", SPIE Vol. 4346, 762-769 (2001)
21. H. Sewell, V. Bunze, N. Deluca and D. McCafferty, "An Evaluation of the Dual Exposure Technique", SPIE Vol. 4344, 323-333 (2001)
22. J. G. Wang, K. Y. Hur and L. G. Studebaker, Ŕ.15 Micron Gate AlInAs/GaInAs MHEMT Fabricated on GaAs Using Deep-UV Phase-shifting Mask Lithography", IEEE Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 74-77 (1997)
23. T. Toyoshima, T. Ishibashi, A. Minamide, K. Sugino, K. Katayama, T. Shoya, I. Arimoto, N. Yasuda, H. Adachi and Y. Matsui, Ŕ.1μm Level Contact Hole Pattern Formation with KrF Lithography by Resolution Enhancement Lithography Assisted by Chemical Shrink (RELACS)", IEDM Tech. Dig. 333-336 (1998)
24. T. Kanda, H. Tanaka, Y. Kinoshita, N. Watase, R. Eakin, T. Ishibashi, T. Toyoshima, N. Yasuda and M. f tTanaka, "Advanced Microlithography Process with Chemical Shrink Technology", SPIE Vol. 3999, 881-889 (2000)
25. R. DellaGuardia, K. Petrillo, J. Chen, P. Rabidoux, T. Dalton, S. Holmes, L. Hadel, K. Malone A. Mahorowala, S. Greco and R. Ferguson, 薑 Lithography and RELACSTM Processing for BEOL Lithography", SPIE Vol. 4346, 1029-1040 (2001)
26. H. L. Chen, F. H. Ko, L. S. Li, C. K. Hsu, B. C. Chen, T. C. Chu and T. Y. Huang, "Thermal flow and chemical shrink techniques for sub-100 nm contact hole fabrication in electron beam lithography", Microprocesses and Nanotechnology Conference, 228-229 (2001).
27. 李龍昇,化學微縮製程應用於電子束微影及其阻劑內金屬雜質擴散吸附行為的研究,國立清華大學碩士論文,2001。
28. T. Ishibashi, T. Toyoshima, N. Yasuda, T. Kanda, H. Tanaka Y. Kinoshita, N. Watase and R. Eakin, "Advanced Micro-Lithography Process with Chemical Shrink Technology", Jpn. J. Appl. Phys. Vol. 40, 419-425 (2001)
29. 許兼貴,深紫外光光罩抗反射技術及次100奈米世代電子束直寫阻劑特性研究,國立清華大學碩士論文,2001。
30. P. J. Paniez, S. Gally, B. Mortini, C. Rosilio, P. O. Sassoulas, R. Dammel, M. Padmanaban, A. Klauck-Jacobs and J. Oberlander, "Thermal Phenomena in Acrylic 193 nm Resists", SPIE Vol. 3678, 1352-1363 (1999)
31. H. S. Chung, J. H. Jung, Y. S. Kim, K. S. Choi, N. H. You, S. W. Yoon and J. E. Park, "New Development of Cost-effective Sub-0.18μm Lithography with I-line", SPIE Vol. 3999, 499-504 (2000)
32. J. S. Kim, C. W. Koh, G. Lee, J. C. Jung and K. S. Shin, "Novel Routes toward Sub-70 nm Contact Windows by Using New KrF Photoresist", SPIE Vol. 4345, 232-240 (2001)
33. J. H. Chung, S. J. Choi, Y. Kang, S. G. Woo and J. T. Moon,"A Novel Resist Material for Sub-100 nm Contact Hole Pattern", SPIE Vol. 3999, 305-312 (2000)
34. H. L. Chen, C. K. Hsu, B. C. Chen, F. H. Ko, J. Y. Yang, T. Y. Huang and T. C. Chu,"Studies of Chemically Amplified Deep UV Resists for Electron Beam Lithography Applications", SPIE Vol. 4343, 781-788 (2001)
35. Y. Kang, S. G. Woo, S. J. Choi and J. T. Moon, "Development of Resist for Thermal Flow Process Application to Mass Production", SPIE Vol. 4345, 222-231 (2001)
36. J. S. Chun, H. E. Kim, S. Barnett and J. Shin, "Novel Harding Methods of DUV Chemically Amplified Photoresist by Ion Implantation and Its Application to New Organic ARC Material and Bilayer Process", SPIE Vol. 3678, 1364-1370 (1999)
37. T. Yamauchi, T. Matsui, J. Kanamori, Y. Miyakawa and K. Shimoyana, Ŕ.2μm Hole Pattern Generation by Critical Dimension Biasing Using Resin Overcoat", Jpn. J. Appl. Phys. Vol. 34, 6615-6621 (1995)
38. J. S. Chun, S. Bakshi, S. Barnett, J. Shin and S. K. Lee, "Contact Hole Size Reducing Methods by Using Water-Soluble Organic Over-coating Material (WASOOM) as a Barrier Layer toward 0.15μm Contact Hole; Resist Flow Technique I", SPIE Vol. 3999, 620-626 (2000)
39. J. S. Chun, C. H. Maeng, M. R. Tesauro, J. Strutvant, J. Oberlander, A. R. Romano, J. Sagan and R. Dammel, "Toward 0.1μm Contact Hole Process by Using Water-Soluble Organic Over-coating Material (WASOOM); Resist Floe Technique (III); Study on WASOOM, Top Flare and Etch Characterization", SPIE Vol. 4345, 647-654 (2001)
40. Yoshio Nishi, Robert Doering andTim Wooldrige, Handbook of Semiconductor Manufacturing Technology, Marcel Dekker Inc, New York, 2000.
41. 郭政達、廖明吉,"先進電子束微影系統設備在特大型積體電路的應用",科學發展月刊,第28卷第3期,2000。
42. 龍文安 著,積體電路微影製程,初版,高立圖書有限公司,台北,1998。
43. Y. Nakayama, S. Okazaki and N. Saitou, "Electron-beam Cell Projection Lithography: A New High-throughput Electro-beam Diret-Writing Technology Using a Specially Tailored Si Aperture", J. Vac. Sci. Technol., 6(6), 1836-1840 (1990)
44. Y. Sakitani, H. Yoda, H. Todokoro, Y. Shibata, T. Yamazaki and K. Ohbitu, "Electron-beam Cell Projection Lithography", J. Vac. Sci. Technol., 10(6), 2759-2763 (1992)
45. 邱燦賓、施敏,"電子束微影技術",科學發展月刊,第28卷第6期,2000。
46. K. Suzuki, S. Matsui and Y. Ochiai, Sub-Half-Micron Lithography for ULSIs, Chapter 4,Cambridge University Press, Cambridge, 1999.
47. C. Y. Chang and S. M. Sze, ULSI Devices, Chapter 1, Wiley-Interscience, New York, 2000.
48. T. B. Chiou, P. Hahmann, M. C. Liaw, T. Y. Huang and M. S, "Evaluation of Fine Pattern Definition with Electron-Beam Direct Writing Lithography", SPIE Vol. 3997, 646-657 (2000)
49. L. F. Thompson, C. G. Willson and M. J. Bowden, Introduction to Microlithography, Chapter 2, American Chemical Society, Washington, 1994.
50. 邱燦賓,"電子束微影技術之鄰近效應修正(I)",毫微米通訊,第七卷第三期,2000。
51. T. H. P. Chang, "Proximity Effect in Electron-beam Lithography", J. Vac. Sci. Technol., 12(6), 1271-1275 (1975)
52. S. A. Rishton and D. P. Kern, "Point Exposure Distribution Measurements for Proximity Correction in Electron Beam Lithography on a Sub-100 nm Scale", J. Vac. Sci. Technol., 5(1), 135-141 (1987)
53. S. J. Wind, M. G. Rosenfield, G. Pepper, W. W. Molzen and P. D. Gerber, "Proximity Correction for Electron Beam Lithography Using a Three-Gaussian Model of the Electron Energy Distribution", J. Vac. Sci. Technol., 7(6), 1507-1512 (1989)
54. 陳威志,電子束近接效應探討與聚亞醯胺電子束阻劑合成之研究,國立清華大學碩士論文,1999。
55. H. Yasuda, S. Arai, J. I. Kai, Y. Ooae, T. Abe, S. Maruyama and T. Kiuchi, "Multielectron Beam Blanking Aperture Array System SYNAPSE-2000", J. Vac. Sci. Technol., 14(6), 3813-3820 (1996)
56. S. D. Berger, J. M. Gibson, R. M. Camarda, R. C. Farrow, H. A. Huggins, J. S. Kraus and J. A. Liddle, "Projection Electron-beam Lithography: A New Approach", J. Vac. Sci. Technol., 9(6), 2996-29999 (1991)
57. L. R. Harriott, "Scattering with Angular Limitation Projection Electron Beam Lithography for Suboptical Lithography", J. Vac. Sci. Technol., 15(6), 2130-2135 (1997)
58. http://www.bell-labs.com/project/SCALPEL, SCALPEL-White Paper, 1999.
59. H. C. Pfeiffer and W. Stickel, "PREVAIL-An E-beam Stepper with Variable Axis Immersion Lenses", Microelectronic Engineering, (27), 143-146, (1995)
60. H. C. Pfeiffer, "PREVAIL-IBM's E-beam Technology for Next Generation Lithography", SPIE Vol. 3999, 206-213 (2000)
61. M. Lercel, C. Magg, M. Barrett, K. Collins, M. Trybendis, N. Caldwell, R. Jeffer and L. Bouchard, "Fabrication of Masks for Electron-beam Projection Lithography", J. Vac. Sci. Technol., 18(6), 3210-3215 (2000)
62. C. J. Martin, R. L. Engelstad, E. G. Lovel and J. A. Liddle, "Thermomechanical Modeling of the SCALPEL Mask During Exposure", SPIE Vol. 3997, 549-559 (2000)
63. P. T. Lee, C. Martin, R. Engelstad, E. G. Lovel C. Robinson and A. Flamholz, "Thermomechanical Distortion of the PREVAIL Mask System During Exposure", J. Vac. Sci. Technol., 19(6), 2641-2645 (2001)
64. G. A. Frisque, R. O. Tejeda, E. G. Lovell and R. Engelstad, "Finite Element Modeling of Ion-beam Lithography Masks for Pattern Transfer Distortions", SPIE Vol. 3676, 768-778 (1999)
65. P. T. Lee, B. Kim, G A. Frisque, R. O. Tejeda, R. L. Engelstad, E. G. Lovell, W. A. Beckman and J. W. Mitchell, "Thermomechanical Distortions of Ion-Beam Stencil Masks During Exposure", SPIE Vol. 3676, 779-785 (1999)
66. Y. Kojima, N. Katakura, Y. Tomo, H. Takenaka, A. Yoshida, I. Shimizu and M. Yamabe, "Experimental Study of Electron Beam Projection Lithography Mask Defect Printability", J. Vac. Sci. Technol., 19(6), 2474-2477 (2001)
67. L. P. Muray, J. P. Spallas, C. Stebler, K. Lee,M Mankos, T. Hsu, M. Gmur and T. H. P. Chang, "Advances in Arrayed Microcolumn Lithography", J. Vac. Sci. Technol., 18(6), 3099-3104 (2000)
68. N. W. Parker, A. D. Brodie and J. H. McCoy, "A High Throughput NGL Electron Beam Direct-writ Lithography System", SPIE Vol. 3997, 713-720 (2000)
69. E. Yin, A. D. Brodie, F. C. Tsai, G. X. Guo and N. W. Parker, "Electron Optical Column for a Multicolumn, Multibeam Direct-write Electron Beam Lithography System", J. Vac. Sci. Technol., 18(6), 3126-3131 (2000)
70. C. A. Spindt, C. E. Holland, P. R. Schwoebel and I. Brodie, "Field-emitter-array Development for Microwave Application", J. Vac. Sci. Technol., 14(3), 1986-1989 (1996)
71. C. A. Spindt, C. E. Holland, P. R. Schwoebel and I. Brodie, " Field-emitter-array Development for Microwave Application II", J. Vac. Sci. Technol., 16(2), 758-761 (1998)
72. D. A. Kinkead and M. Ercken, "Progress in Qualifying and Quantifying the Airborne Base Sensitivity of Modern Chemically Amplified DUV Photoresist", SPIE Vol. 3999, 750-758 (2000)
73. K. Dean and O. Kishkovich, "Environmental Stability Chemically Amplified Resists: Proposing an Industry Standards Methodology for Testing", SPIE Vol. 3999, 284-293 (2000)
74. A. Grayfer, O. Kishkovich and D. Ruede, "Protection 248μm and 193μm Lithography from Airborne Molecular Contamination During Semiconductor Fabrication", SPIE Vol. 4346, 676-684 (2001)
75. O. P. Kishkovich and C. E. Larson, "Amine Control for DUV Lithography: Identifying Hidden Sources", SPIE Vol. 3999, 699-705 (2000)
76. Hiroshi Ito, "Chemically Amplified Resist: Past, Present, and Future", SPIE Vol. 3678, 2-12 (1999)
77. 葛祖榮,利用微波消化前處理技術與電熱式汽化裝置連線技術配合感應耦合電漿質譜儀分析半導體用光阻劑中微量雜質元素之研究,國立清華大學碩士論文,2001。
78. Stanley Wolf and Richard N. Tauber, Silicon Processing for the VLSI Era Volume 1:Process Technology, Chapter 12, second Ed., Lattice, California, 1986.
79. Clariant Product Presentation.
80. J. W. Cobum and Harold F. Winters, "Plasma Etching: A Discussion of Mechanism", J. Vac. Sci. Technol., 16(2), 1979.
81. Bernice G. Segal, Chemistry: Experiment and Theory, John Wiley & Sons, New York, 1985.
82. H. S. Chung, J. H. Jung, Y. S. Kim, K. S. Choi, N. H. You, S. W. Yoon and J. E. Park, " New Development of Cost-effective Sub-0.18 μm Lithography with i-line", SPIE Vol. 3999, 499-504 (2000)
83. C. H. Kim, C. U. Jeon, S.J. Han, W. I. Cho, S. W. Choi, W. S. Han and J. M. Sohn, "Vacuum Delay Effect of CAR in Mask Fabrication", SPIE Vol. 4343, 285-293 (2001)
84. S. Hashimoto, T. Itani, H. Yoshino, M. Yamana, N. Samoto and k. Kasama, "A Study of Acid Evaporation Property in Chemically Amplified Resists", SPIE Vol. 3049, 248-255 (1997)
85. 莊達人 著,VLSI製造技術,四版,高立圖書有限公司,台北,1998。
86. D. A. Kinkead, A. Grayfer and O. Kishkovich, "Prevention of Optic and Resist Contamination in 300mm Lithography -- Improvements in Chemical Air Filtration" SPIE, Vol. 4343, 739-752 (2001)
87. H. M. Kingston, Stephen J. Haswell, Microwave-Enhanced Chemistry: Fundamentals, Sample Preparation, and Applications, American Chemical Society, Washington, D.C., 1997.