簡易檢索 / 詳目顯示

研究生: 吳采薇
Wu, Tsai-Wei
論文名稱: 超重力旋轉床中使用PZ/DETA混合吸收劑捕獲燃氣電廠排氣中之二氧化碳
CO2 Capture Using PZ/DETA Mixture from Flue Gas of Natural Gas Power Plants in a Rotating Packed Bed
指導教授: 談駿嵩
口試委員: 汪上曉
王竹方
蔣本基
凌永健
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 94
中文關鍵詞: 二氧化碳捕獲化學吸收法哌嗪超重力旋轉床高濃度吸收劑
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以超重力旋轉床(Rotating Packed Bed, RPB)取代傳統固定填充塔(Packed Bed, PB),搭配反應速率快且CO2吸收容量大的兩種胺類Piperazine (PZ)及Diethylenetriamine (DETA)捕獲天然氣電廠之煙道氣體中CO2,探究提升吸收劑濃度對於CO2捕獲及吸收劑再生之影響;另亦以Aspen Plus模擬探討相同操作條件下,達到與RPB相同CO2捕獲效率之填充塔體積,以及與RPB相同體積固定填充塔之CO2捕獲效率,以了解RPB取代傳統填充塔之可行性。
    PZ/DETA混合配方濃度由2.5 m/2.07 m提升至4 m/8 m,結果顯示Lean Loading為0時PZ/DETA (4 m/6 m)有最佳吸收效果;而Lean Loading約為0.5時最佳吸收配方則是PZ/DETA (4 m/4 m)。此應為配方濃度提升時可增加CO2溶解度及吸收驅動力,然而濃度及Loading值提升時黏度亦提升,導致CO2擴散阻力增加,因此濃度提升之正面效應較無法顯現。
    Aspen模擬結果顯示,於相同操作條件下,欲達到相同捕獲效率,填充塔之所需體積較RPB為大,且於高Lean Loading時固定填充塔之所需體積最高可達RPB之4.6倍;而兩種反應器之體積相同時,旋轉床亦有較佳捕獲效率,Lean Loading高時差異可達63%。本研究另探討提升氣體流量對於CO2捕獲量之影響,結果顯示如於CO2捕獲時不限制高捕獲效率,則氣體流量提升於RPB中可大幅提升捕獲量至兩倍以上。而就同體積之RPB與固定填充塔而言,於高氣體流量下操作,隨Lean Loading提升RPB相較於填充塔之捕獲量提升幅度越高,最高可達4.6倍,以上結果皆證明RPB取代固定填充塔可行性相當高。
    綜合各吸收劑配方吸收效果與再生能耗比較,PZ/DETA (4 m/4 m)於RPB中再生之能耗較傳統所用之30 wt% MEA低54.8%,搭配其高CO2捕獲效率及容量,實為一具有發展潛力之吸收劑。


    Capture of CO2 from natural power plants flue gas by mixed aqueous alkanolamine in a rotating packed bed (RPB) in place of conventional packed bed (PB) absorber was studied. Piperazine (PZ) and Diethylenetriamine (DETA) with fast reaction rate and high CO2 capacity were mixed as CO2 absorbent, and the concentration of alkanolamine was raised in experiments to study the effects of concentration on CO2 capture and absorbent regeneration. In order to figure out the feasibility of RPB in substitution for PB, Aspen Plus simulation of CO2 capture in packed bed using MEA as absorbent was carried out, and the results were compared with RPB experiments results at the same operating conditions.
    Concentration of PZ/DETA mixed absorbents was raised from 2.5 m/2.07 m to 4 m/8 m, and the results showed that the absorbent with the best capture efficiency is PZ/DETA (4 m/6 m) when lean loading is 0, whereas when lean loading is about 0.5, the best CO2 capture absorbent is PZ/DETA (4 m/4 m). Although raising the concentration of absorbents may increase CO2 solubility and driving force for CO2 absorption, the viscosity also increases when raising up the concentration and lean loading of absorbents, leading to the increment of CO2 diffusive resistance and the advantages of raising the concentration was overwhelmed.
    Results from Aspen Plus simulation showed that at the same operating conditions, PB requires bigger volume than RPB to achieve same capture efficiency, and it’s more significant when lean loading is high, with PB volume reaching 4.6 times of RPB volume. Moreover, capture efficiency is better in RPB than in PB when the two reactors’ volumes are the same. Similarly, the difference of capture efficiency in two reactors is more significant when lean loading is high, reaching 63%.
    Effect of increasing gas flow rate on CO2 capture amount was also studied. If there is no limit to CO2 capture efficiency in CO2 absorption process, increasing gas flow rate can make CO2 capture amount upgraded to more than two times. And for RPB and PB with same volume, operating at high gas flow rate, the increased level of CO2 capture amount is more significant along with the increment of lean loading, reaching 4.6 times at most. The results above showed that the feasibility of RPB in place of PB is high.
    Comparison of absorption effects and regeneration energy of every absorbent showed that PZ/DETA (4 m/4 m) can be regenerated with 54.8% lower energy than conventional absorbent 30 wt% MEA. With its high CO2 capture efficiency and CO2 capacity, PZ/DETA (4 m/4 m) is an absorbent with potential.

    目錄 誌謝 I 摘要 II 目錄 III 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1-1 研究背景 1 1-2 研究目的 5 第二章 文獻回顧 7 2-1 CO2捕獲技術 7 2-2 CO2分離技術 8 2-3 化學吸收法吸收劑類型與其反應機制 11 2-3-1 碳酸鉀 11 2-3-2 醇胺類吸收劑 12 2-3-3 氫氧化鈉 16 2-4 化學吸收法之吸收劑發展趨勢 17 2-5 超重力旋轉床製程 22 第三章 實驗方法 27 3-1 實驗儀器 27 3-1-1 CO2捕獲實驗 27 3-1-2 CO2再生實驗 28 3-2 實驗藥品與氣體 28 3-3 實驗步驟 29 3-3-1 CO2捕獲實驗 29 3-3-2 CO2再生實驗 30 3-4 儀器校正 31 3-5 數據處理 32 3-5-1 CO2捕獲實驗 32 3-5-2 CO2再生實驗 33 3-6 實驗架構 34 第四章 實驗結果 37 4-1 CO2捕獲實驗結果與討論 37 4-1-1 操作條件與配方比例 37 4-1-2 提升吸收劑濃度對CO2捕獲造成之影響 38 4-1-3 各吸收劑配方之溶解溫度 45 4-1-4 提升吸收劑Lean Loading對CO2捕獲造成之影響 45 4-1-5 以超重力旋轉床與傳統填充塔捕獲CO2之比較 52 4-2 RPB與Aspen模擬之傳統填充塔吸收效果比較 54 4-2-1 RPB與填充塔於相同氣液流量下達到相同捕獲效率之體積比較 56 4-2-2 同體積之RPB與填充塔於相同操作條件下之捕獲效率比較 59 4-2-3 同體積之RPB與填充塔提升氣體流量對CO2捕獲量之影響 61 4-3 CO2再生實驗結果與討論 64 4-3-1 再生之配方與操作條件 64 4-3-2 質量平衡與能量平衡 65 4-3-3 結果與討論 68 第五章 結論 71 參考文獻 73 附錄 A 實驗原始數據 80 附錄 B 符號縮寫表 93

    Abu-Zahra, M.R.M., Niederer, J.P.M., Feron, P.H.M., Versteeg, G.F., 2007a. CO2 Capture from Power Plants: Part II. A Parametric Study of the Economical Performance Based on Mono-Ethanolamine. International Journal of Greenhouse Gas Control 1, 135-142.
    Abu-Zahra, M.R.M., Schneiders, L.H.J., Niederer, J.P.M., Feron, P.H.M., Versteeg, G.F., 2007b. CO2 Capture from Power Plants: Part I. A Parametric Study of the Technical Performance Based on Monoethanolamine. International Journal of Greenhouse Gas Control 1, 37-46.
    Aroonwilas, A., Tontiwachwuthikul, P., 1997. High-Efficiency Structured Packing for CO2 Separation Using 2-Amino-2-Methyl-1-Propanol (AMP). Separation and Purification Technology 12, 67-79.
    Aroonwilas, A., Veawab, A., Tontiwachwuthikul, P., 1999. Behavior of the Mass-Transfer Coefficient of Structured Packings in CO2 Absorbers with Chemical Reactions. Industrial & Engineering Chemistry Research 38, 2044-2050.
    Barzagli, F., Mani, F., Peruzzini, M., 2013. Efficient CO2 Absorption and Low Temperature Desorption with Non-Aqueous Solvents Based on 2-Amino-2-Methyl-1-Propanol (AMP). International Journal of Greenhouse Gas Control 16, 217-223.
    BBC, 2013. Carbon Dioxide Passes Symbolic Mark. http://www.bbc.co.uk/news/science-environment-22486153.
    Bishnoi, S., Rochelle, G.T., 2000. Absorption of Carbon Dioxide into Aqueous Piperazine: Reaction Kinetics, Mass Transfer and Solubility. Chemical Engineering Science 55, 5531-5543.
    Bishnoi, S., Rochelle, G.T., 2002. Absorption of Carbon Dioxide in Aqueous Piperazine/Methyldiethanolamine. AIChE Journal 48, 2788-2799.
    Blauwhoff, P.M.M., Versteeg, G.F., Van Swaaij, W.P.M., 1983. A Study on the Reaction between CO2 and Alkanolamines in Aqueous Solutions. Chemical Engineering Science 38, 1411-1429.
    Browning, G., Weiland, R.H., 1994. Physical Solubility of Carbon Dioxide in Aqueous Alkanolamines via Nitrous Oxide Analogy. Journal of Chemical & Engineering Data 39, 817-822.
    Canepa, R., Wang, M., Biliyok, C., Satta, A., 2013. Thermodynamic Analysis of Combined Cycle Gas Turbine Power Plant with Post-Combustion CO2 Capture and Exhaust Gas Recirculation. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 227, 89-105.
    Caplow, M., 1968. Kinetics of Carbamate Formation and Breakdown. Journal of the American Chemical Society 90, 6795-6803.
    Chang, C.C., Chiu, C.Y., Chang, C.Y., Chang, C.F., Chen, Y.H., Ji, D.R., Yu, Y.H., Chiang, P.C., 2009. Combined Photolysis and Catalytic Ozonation of Dimethyl Phthalate in a High-Gravity Rotating Packed Bed. J Hazard Mater 161, 287-293.
    Chang, E.E., Pan, S.Y., Chen, Y.H., Tan, C.S., Chiang, P.C., 2012. Accelerated Carbonation of Steelmaking Slags in a High-Gravity Rotating Packed Bed. J Hazard Mater 227-228, 97-106.
    Chang, Y.C., Leron, R.B., Li, M.H., 2013. Equilibrium Solubility of Carbon Dioxide in Aqueous Solutions of (Diethylenetriamine+Piperazine). The Journal of Chemical Thermodynamics 64, 106-113.
    Chen, J.F., Wang, Y.H., Guo, F., Wang, X.M., Zheng, C., 2000. Synthesis of Nanoparticles with Novel Technology:  High-Gravity Reactive Precipitation. Industrial & Engineering Chemistry Research 39, 948-954.
    Chen, Y.R., Caparanga, A.R., Soriano, A.N., Li, M.H., 2010. Liquid Heat Capacity of the Solvent System (Piperazine + N-methyldiethanolamine + Water). The Journal of Chemical Thermodynamics 42, 54-59.
    Chen, Y.S., Lin, C.C., Liu, H.S., 2005. Mass Transfer in a Rotating Packed Bed with Various Radii of the Bed. Industrial & Engineering Chemistry Research 44, 7868-7875.
    Cheng, H.H., Lai, C.C., Tan, C.S., 2013. Thermal Regeneration of Alkanolamine Solutions in a Rotating Packed Bed. International Journal of Greenhouse Gas Control 16, 206-216.
    Cheng, H.H., Tan, C.S., 2006. Reduction of CO2 Concentration in a Zinc/Air Battery by Absorption in a Rotating Packed Bed. Journal of Power Sources 162, 1431-1436.
    Cheng, H.H., Tan, C.S., 2011. Removal of CO2 from Indoor Air by Alkanolamine in a Rotating Packed Bed. Separation and Purification Technology 82, 156-166.
    Cheng, H.H., Shen, J.F., Tan, C.S., 2010. CO2 Capture from Hot Stove Gas in Steel Making Process. International Journal of Greenhouse Gas Control 4, 525-531.
    Cheng, H.H., Tan, C.S., 2009. Carbon Dioxide Capture by Blended Alkanolamines in Rotating Packed Bed. Greenhouse Gas Control Technologies 9 1, 925-932.
    Chowdhury, F.A., Okabe, H., Yamada, H., Onoda, M., Fujioka, Y., 2011. Synthesis and Selection of Hindered New Amine Absorbents for CO2 Capture. Energy Procedia 4, 201-208.
    Cullinane, J.T., Rochelle, G.T., 2005. Kinetics of Carbon Dioxide Absorption into Aqueous Potassium Carbonate and Piperazine. Industrial & Engineering Chemistry Research 45, 2531-2545.
    Donaldson, T.L., Nguyen, Y.N., 1980. Carbon Dioxide Reaction Kinetics and Transport in Aqueous Amine Membranes. Industrial & Engineering Chemistry Fundamentals 19, 260-266.
    Du, Y., Li, L., Namjoshi, O., Voice, A.K., Fine, N.A., Rochelle, G.T., 2013. Aqueous Piperazine/N-(2-Aminoethyl) Piperazine for CO2 Capture. Energy Procedia 37, 1621-1638.
    Duckett, M., Ruhemann, M., 1985. Cryogenic Gas Separation. Chemical engineer (London), 14-17.
    Dugas, R. E., 2006. Pilot Plant Study of Carbon Dioxide Capture by Aqueous Monoethanolamine. M.S.E. Thesis, The University of Texas at Austin.
    EIA, 2012. Annual Energy Outlook 2012 with Projections to 2035. Office of Integrated and International Energy Analysis, U.S. Department of Energy.
    Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean, J., Lowe, D.C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schultz, M., Van Dorland, R., 2007. Changes in Atmospheric Constituents and in Radiative Forcing, in: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.). Cambridge University Press, Cambridge, United Kingdom, pp. 129-234.
    Fowler, R., Gendes, K.F., Nyguard, H.F., 1989. Commercial Scale Demonstration of Higee for Bilk CO2 Removal and Gas Dehydration. 21st Annual Offshore Technology Conference, Houston.
    Freeman, S.A., Dugas, R., Van Wagener, D., Nguyen, T., Rochelle, G.T., 2009. Carbon Dioxide Capture with Concentrated, Aqueous Piperazine. Energy Procedia 1, 1489-1496.
    García-Abuín, A., Gómez-Díaz, D., Navaza, J.M., Vidal-Tato, I., 2011. Kinetics of Carbon Dioxide Chemical Absorption into Cyclic Amines Solutions. AIChE Journal 57, 2244-2250.
    Goff, G.S., Rochelle, G.T., 2005. Oxidation Inhibitors for Copper and Iron Catalyzed Degradation of Monoethanolamine in CO2 Capture Processes. Industrial & Engineering Chemistry Research 45, 2513-2521.
    Guo, F., Zheng, C., Guo, K., Feng, Y., Gardner, N.C., 1997. Hydrodynamics and Mass Transfer in Cross-Flow Rotating Packed Bed. Chemical Engineering Science 52, 3853-3859.
    Hart, A., Gnanendran, N., 2009. Cryogenic CO2 Capture in Natural Gas. Energy Procedia 1, 697-706.
    Hartono, A., da Silva, E.F., Grasdalen, H., Svendsen, H.F., 2007. Qualitative Determination of Species in DETA−H2O− CO2 System Using 13C NMR Spectra. Industrial & Engineering Chemistry Research 46, 249-254.
    Hartono, A., da Silva, E.F., Svendsen, H.F., 2009. Kinetics of Carbon Dioxide Absorption in Aqueous Solution of Diethylenetriamine (DETA). Chemical Engineering Science 64, 3205-3213.
    He, L., Li, J., Chen, L., Ni, Y., Xu, G., Zhang, Y., Wu, W., 2013. Experimental Study on Efficient Absorption of Carbon Dioxide from Simulation Flue Gas by Rotary Packed Bed, in: Qi, H., Zhao, B. (Eds.), Cleaner Combustion and Sustainable World. Springer Berlin Heidelberg, pp. 1347-1350.
    Hsu, L.J., Lin, C.C., 2011. Removal of Methanol and 1-Butanol from Binary Mixtures by Absorption in Rotating Packed Beds with Blade Packings. Chemical Engineering Journal 168, 190-200.
    IEAGHG, 2012. CO2 Capture at Gas Fired Power Plants, Report 2012/8. Cheltenham, UK: IEAGHG.
    International Energy Agency, 2010. Energy Technology Perspectives 2010: Scenarios and Strategies to 2050. OECD/IEA.
    Irons, R., Sekkapan, G., Panesar, R., Gibbins, J., Lucqiuaud, M., 2007. CO2 Capture Ready Plants. IEA Greenhouse Gas R & D Programme.
    Jassim, M.S., Rochelle, G., Eimer, D., Ramshaw, C., 2007. Carbon Dioxide Absorption and Desorption in Aqueous Monoethanolamine Solutions in a Rotating Packed Bed. Industrial & Engineering Chemistry Research 46, 2823-2833.
    Keyvani, M., Gardner, N.C., 1989. Operating Characteristics of Rotating Beds. Chemical Engineering Progress 85, 48.
    Kim, I., Svendsen, H.F., 2011. Comparative Study of the Heats of Absorption of Post-combustion CO2 Absorbents. International Journal of Greenhouse Gas Control 5, 390-395.
    Kohl, K., Nielsen, R., 1985. Gas Purification, 4th ed. Gulf Publishing Company: Houston, TX.
    Ku, Y., Ji, Y.S., Chen, H.W., 2008. Ozonation of O-Cresol in Aqueous Solutions Using a Rotating Packed-Bed Reactor. Water Environ Res 80, 41-46.
    Li, L., Voice, A.K., Li, H., Namjoshi, O., Nguyen, T., Du, Y., Rochelle, G.T., 2013. Amine Blends Using Concentrated Piperazine. Energy Procedia 37, 353-369.
    Liao, C.H., Li, M.H., 2002. Kinetics of Absorption of Carbon Dioxide into Aqueous Solutions of Monoethanolamine+N-Methyldiethanolamine. Chemical Engineering Science 57, 4569-4582.
    Lin, C.C., Chen, B.C., 2011. Carbon Dioxide Absorption in a Cross-Flow Rotating Packed Bed. Chemical Engineering Research and Design 89, 1722-1729.
    Lin, C.C., Ho, T.J., Liu, W.T., 2002. Distillation in a Rotating Packed Bed. Journal of Chemical Engineering of Japan 35, 1298-1304.
    Lin, C.C., Liu, W.T., 2003. Ozone Oxidation in a Rotating Packed Bed. Journal of Chemical Technology & Biotechnology 78, 138-141.
    Lin, C.C., Liu, W.T., Tan, C.S., 2003. Removal of Carbon Dioxide by Absorption in a Rotating Packed Bed. Industrial & Engineering Chemistry Research 42, 2381-2386.
    Lin, C., Liu, W., 2006. Removal of an Undesired Component from a Valuable Product Using a Rotating Packed Bed. Journal of Industrial and Engineering Chemistry-Seoul-12, 455.
    Lin, C., Liu, W., 2007. Mass Transfer Characteristics of a High-Voidage Rotating Packed Bed. Journal of Industrial and Engineering Chemistry-Seoul-13, 71.
    Mauna Loa Observatory, 2013. Atmospheric CO2 at Mauna Loa Observatory. Earth System Research Laboratory, Global Monitoring Division, http://www.esrl.noaa.gov/gmd/obop/mlo/.
    Mangalapally, H.P., Hasse, H., 2011. Pilot Plant Experiments for Post Combustion Carbon Dioxide Capture by Reactive Absorption with Novel Solvents. Energy Procedia 4, 1-8.
    Mangalapally, H.P., Notz, R., Hoch, S., Asprion, N., Sieder, G., Garcia H., Hasse, H., 2009. Pilot Plant Experimental Studies of Post Combustion CO2 Capture by Reactive Absorption with MEA and New Solvents. Energy Procedia 1, 963-970.
    Moon, S.H., Shim, J.W., 2006. A Novel Process for CO2/CH4 Gas Separation on Activated Carbon Fibers—Electric Swing Adsorption. Journal of Colloid and Interface Science 298, 523-528.
    Mumford, K.A., Smith, K.H., Anderson, C.J., Shen, S., Tao, W., Suryaputradinata, Y.A., Qader, A., Hooper, B., Innocenzi, R.A., Kentish, S.E., Stevens, G.W., 2011. Post-Combustion Capture of CO2: Results from the Solvent Absorption Capture Plant at Hazelwood Power Station Using Potassium Carbonate Solvent. Energy & Fuels 26, 138-146.
    Nascimento, J.V.S., Ravagnani, T.M.K., Pereira, J.A.F.R., 2009. Experimental Study of a Rotating Packed Bed Distillation Column. Brazilian Journal of Chemical Engineering 26, 219-226.
    Olajire, A.A., 2010. CO2 Capture and Separation Technologies for End-of-Pipe Applications – a Review. Energy 35, 2610-2628.
    Onda, K., Takeuchi, H., Okumoto, Y., 1968. Mass Transfer Coefficients between Gas and Liquid Phases in Packed Columns. Journal of Chemical Engineering of Japan 1, 56-62.
    Pan, S.Y., Chiang, P.C., Chen, Y.H., Tan, C.S., Chang, E.E., 2013. Ex Situ CO2 Capture by Carbonation of Steelmaking Slag Coupled with Metalworking Wastewater in a Rotating Packed Bed. Environmental Science & Technology 47, 3308-3315.
    Ramshaw, C., Mallinson, H., 1981. Mass Transfer Process. U.S. Patent No. 4 283 255.
    Richter, J., Knoche, F., 1983. Reversibility of Combustion Processes, Efficiency and Costing. American Chemical Society, pp. 71-85.
    Rinker, E.B., Sami, S.A., Sandall, O.C., 1995. Kinetics and Modelling of Carbon Dioxide Absorption into Aqueous Solutions of N-Methyldiethanolamine. Chemical Engineering Science 50, 755-768.
    Rochelle, G., Chen, E., Freeman, S., Van Wagener, D., Xu, Q., Voice, A., 2011. Aqueous Piperazine as the New Standard for CO2 Capture Technology. Chemical Engineering Journal 171, 725-733.
    Rochelle, G.T., 2009. Amine Scrubbing for CO2 Capture. Science 325, 1652-1654.
    Sakwattanapong, R., Aroonwilas, A., Veawab, A., 2005. Behavior of Reboiler Heat Duty for CO2 Capture Plants Using Regenerable Single and Blended Alkanolamines. Industrial & Engineering Chemistry Research 44, 4465-4473.
    Samanta, A., Bandyopadhyay, S.S., 2011. Absorption of Carbon Dioxide into Piperazine Activated Aqueous N-Methyldiethanolamine. Chemical Engineering Journal 171, 734-741.
    Savage, D.W., Astarita, G., Joshi, S., 1980. Chemical Absorption and Desorption of Carbon Dioxide from Hot Carbonate Solutions. Chemical Engineering Science 35, 1513-1522.
    Sawistoski, H., 1957. Flooding Velocities in Packed Columns Operating at Reduced Pressure. Chemical Engineering Science 6, 138.
    Schäffer, A., Brechtel, K., Scheffknecht, G., 2012. Comparative Study on Differently Concentrated Aqueous Solutions of MEA and TETA for CO2 Capture from Flue Gases. Fuel 101, 148-153.
    Singh, P., van Swaaij, W.P.M., Brilman, D.W.F., 2011. Kinetics Study of Carbon Dioxide Absorption in Aqueous Solutions of 1,6-Hexamethyldiamine (Hmda) and 1,6-Hexamethyldiamine, N,N' Di-Methyl (HMDA, N,N'). Chemical Engineering Science 66, 4521-4532.
    Singh, S.P., Wilson, J.H., Counce, R.M., Lucero, A.J., Reed, G.D., Ashworth, R.A., Elliott, M.G., 1992. Removal of Volatile Organic Compounds from Groundwater Using a Rotary Air Stripper. Industrial & Engineering Chemistry Research 31, 574-580.
    Smith, N., Miller, G., Aandi, I., Gadsden, R., Davison, J., 2013. Performance and Costs of CO2 Capture at Gas Fired Power Plants. Energy Procedia 37, 2443-2452.
    Stevens, P., 2012 The "Shale Gas Revolution": Developments and Changes. Energy, Environment and Resources, Chatham House.
    Steele, W.V., Chirico, R.D., Knipmeyer, S.E., Nguyen, A., Smith, N.K., 1997. Thermodynamic Properties and Ideal-gas Enthalpies of Formation for Dicyclohexyl Sulfide, Diethylenetriamine, Di-n-octyl Sulfide, Dimethyl Carbonate, Piperazine, Hexachloroprop-1-ene, Tetrakis(dimethylamino)ethylene, N,N-bis-(2-hydroxyethyl)ethylenediamine, and 1,2,4-Triazolo[1,5-a]pyrimidine. Journal of Chemical & Engineering Data 42, 1037-1052.
    Tan, C.S., Chen, J.E., 2006. Absorption of Carbon Dioxide with Piperazine and Its Mixtures in a Rotating Packed Bed. Separation and Purification Technology 49, 174-180.
    Tontiwachwuthikul, P., Meisen, A., Lim, C.J., 1992. CO2 Absorption by Naoh, Monoethanolamine and 2-Amino-2-Methyl-1-Propanol Solutions in a Packed Column. Chemical Engineering Science 47, 381-390.
    Tung, H.H., Mah, R.S.H., 1985. Modeling Liquid Mass-Transfer in Higee Separation Process. Chemical Engineering Communications 39 (1-6), 147-153.
    Wang, G.Q., Xu, O.G., Xu, Z.C., Ji, J.B., 2008. New Higee-Rotating Zigzag Bed and Its Mass Transfer Performance. Industrial & Engineering Chemistry Research 47, 8840-8846.
    Wang, M., Zou, H.K., Shao, L., Chen, J.F., 2004. Controlling Factors and Mechanism of Preparing Needlelike CaCO3 under High-Gravity Environment. Powder Technology 142, 166-174.
    Wolsky, A.M., Daniels, E.J., Jody, B.J., 1994. CO2 Capture from the Flue Gas of Conventional Fossil-Fuel-Fired Power Plants. Environmental Progress 13, 214-219.
    Xiao, J., Li, C.-W., Li, M.-H., 2000. Kinetics of Absorption of Carbon Dioxide into Aqueous Solutions of 2-Amino-2-Methyl-1-Propanol+Monoethanolamine. Chemical Engineering Science 55, 161-175.
    Xu, S., Wang, Y.-W., Otto, F.D., Mather, A.E., 1996. Kinetics of the Reaction of Carbon Dioxide with 2-Amino-2-Methyl-1-Propanol Solutions. Chemical Engineering Science 51, 841-850.
    Yan, S., He, Q., Ai, P., Wang, Y., Zhang, Y., 2013. Regeneration Performance of Concentrated CO2-Rich Alkanolamine Solvents: The First Step Study of a Novel Concept for Reducing Regeneration Heat Consumption by Using Concentration Swing Absorption Technology. Chemical Engineering and Processing: Process Intensification 70, 86-94.
    Yih, S.M., Shen, K.P., 1988. Kinetics of Carbon Dioxide Reaction with Sterically Hindered 2-Amino-2-Methyl-1-Propanol Aqueous Solutions. Industrial & Engineering Chemistry Research 27, 2237-2241.
    Ying, J., Eimer, D.A., 2013. Determination and Measurements of Mass Transfer Kinetics of CO2 in Concentrated Aqueous Monoethanolamine Solutions by a Stirred Cell. Industrial & Engineering Chemistry Research 52, 2548-2559.
    Yu, C.H., Cheng, H.H., Tan, C.S., 2012. CO2 Capture by Alkanolamine Solutions Containing Diethylenetriamine and Piperazine in a Rotating Packed Bed. International Journal of Greenhouse Gas Control 9, 136-147.
    Zhang, L.L., Wang, J.X., Sun, Q., Zeng, X.F., Chen, J.F., 2012. Removal of Nitric Oxide in Rotating Packed Bed by Ferrous Chelate Solution. Chemical Engineering Journal 181–182, 624-629.
    林佳璋、劉文宗,2003。超重力技術的原理及進展,工業技術研究院資訊中心「化工資訊」,第16-21頁。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE