簡易檢索 / 詳目顯示

研究生: 吳重毅
Wu, Chung Yi
論文名稱: 製備高度水分散性TiO2奈米粒子以提升有機染料的可見光光催化降解研究
Preparation of Highly Water-Dispersible TiO2 Nanoparticles for Visible-Light Photocatalytic Degradation of Organic Dyes
指導教授: 吳劍侯
Wu, Chien Hou
口試委員: 董瑞安
黃國柱
王竹方
張淑閔
鄧金培
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2016
畢業學年度: 104
論文頁數: 168
中文關鍵詞: 二氧化鈦分散性染料敏化鐵離子活性氧化物種
外文關鍵詞: TiO2, Dispersion, Dye photosensitization, ferric ions, Reactive oxygen species
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光觸媒技術是指利用光的能量照射在固體材料上,此材料可將光能轉換成化學能,促使有機物污染物的分解或合成,進而達到除污、除臭、工業合成等目的。在眾多的光觸媒材料中,TiO2有相當優良的光觸媒活性,而且有物理與化學性質穩定,耐酸鹼、價格便宜、容易製備、無毒等優點,所以成為最具發展潛力的光觸媒材料。雖然TiO2已廣泛地應用於染料敏化太陽能電池及水體污染物降解等能源及環境領域,但TiO2觸媒存在易聚集、難以回收、能隙大等缺點而限制了該材料的應用性。本論文以製備高度水分散性TiO2奈米粒子為主軸,研究內容主要分成三大部分,第一部分探討鹼性過氧化氫(alkaline hydrogen peroxide, AHP)處理市售TiO2粉末(AHP-TiO2)之製備流程條件。利用熱重分析儀(TGA)、電子能譜儀(XPS)、傅立葉轉換紅外線光譜儀(FT-IR)等儀器分析AHP-TiO2表面變異,結果顯示AHP-TiO2表面的氫氧官能基總量比未修飾TiO2增加了2.6倍。從穿透式電子顯微鏡(TEM)、動態光散射儀(DLS)及原子力顯微鏡(AFM)觀察到AHP-TiO2的形狀與粒徑均一,能有效地分散於極性溶液中減少聚集。第二部分則是將AHP-TiO2應用於染料光敏化系統,並探討過渡金屬離子的影響。因AHP-TiO2的分散性高,能有效地利用可見光能量,使得染料污染物的降解速率明顯提升。在此系統中加入不同的金屬離子(Fe3+、Cu2+、Zn2+以及Al3+)測試,結果發現Fe3+離子能與表面的氫氧官能基錯合,當染料經可見光激發出的電子會轉移到此錯合物而釋放出額外的活性氧化物種(reactive oxygen species, ROS)以提升染料降解速率,此反應速率與市售二氧化鈦(Degussa P25)相比高出一個數量級。活性氧化物種包含超氧離子(superoxide anion)、單一態氧(singlet oxygen)、氫氧自由基(hydroxyl radical),為了探討此系統的活性氧化物種,第三部分研究主題為甲醇氧化(methanol oxidation)及香豆素衍生法(coumarin derivation)偵測系統中產生的氫氧自由基。結果顯示AHP-TiO2-Fe3+光敏化系統裡,主要是產生氫氧自由基,經由此兩種方法捕捉氫氧自由基能力的不同,推測出此系統所產生的氫氧自由基主要來自於AHP-TiO2-Fe3+表面。

    關鍵字: 二氧化鈦(TiO2)、分散性、染料敏化、鐵離子、活性氧化物種


    Alkaline hydrogen peroxide treatment was proposed as a simple and green way to improve the performance of commercial TiO2 powder for water-dispersibility and visible-light photocatalytic activity on the degradation of organic dyes. The performance of treated TiO2 (AHP-TiO2) was evaluated as a function of NaOH concentration, H2O2 concentration, and treatment time. The optimal conditions were determined to be 24 h in 100 mM H2O2 and 8 M NaOH. The treated samples were characterized by Raman spectroscopy, high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and ultraviolet-visible spectrophotometry. The analysis revealed that the crystal structure, morphology, and absorption band gap were retained, but the surface of AHP-TiO2 was dramatically changed. AHP-TiO2 could be highly dispersible with a uniform hydrodynamic size of 41 ± 12 nm and stable over months in acidic water without any stabilizing ligand. It could also significantly enhance the visible-light photodegradation of dye pollutants. The superior performance was attributed to the formation of abundant surface hydroxyl groups, estimated to 12.0 OH/nm2. Effect of Fe3+ ion on the photocatalytic activity of the treated TiO2 was studied. The results show that Fe3+ accelerated the photodegradation of dyes in aqueous AHP-TiO2 dispersions with one order of magnitude larger than that of commercial P-25. This may be ascribed to the complexation of the surface hydroxyl groups of AHP-TiO2 with Fe3+ to form Fe(OH)2+. A plausible reaction mechanism for this system was proposed. The apparent quantum efficiency of hydroxyl radical formation was calculated for different TiO2 suspensions by methanol oxidation and coumarin derivatization. The experimental observations suggest that Fe3+ ion could accelerate the generation rate of hydroxyl radical species in AHP-TiO2 and the system oxidation should be caused by adsorbed hydroxyl radical species, rather than free hydroxyl radical species under visible light irradiation.
    Keywords: TiO2, Dispersion, Dye photosensitization, ferric ions, Reactive oxygen species

    Table of Contents Chapter 1 Overview 1 1.1 Introduction 1 1.2 References 4 Chapter 2 High Hydroxyl Group Density on the Surface of TiO2 Pretreated with Alkaline Hydrogen Peroxide and Aggregation of TiO2 Nanoparticles in Aqueous Solution 7 2.1 Introduction 7 2.2Background 10 2.2.1 Nanoparticles Aggregation 10 2.2.2 Colloidal Aggregation Kinetics 10 2.2.3 DLVO Theory 12 2.2.4 Colloidal Stability and Aggregation of Nanoparticles in Aqueous Solution 13 2.2.5 Colloidal Dispersion Technology 15 2.3 Experimental details 16 2.3.1 Materials 16 2.3.2. Instruments 16 2.3.3. Preparation of alkaline hydrogen peroxide-treated TiO2 nanoparticles (denoted as AHP-TiO2 NPs) 18 2.4 Results and Discussion 19 2.4.1 Alkaline H2O2 Pretreatment 19 2.4.2 Alkaline H2O2 Treated TiO2 Surface Characterization 23 2.4.3 Aggregation Kinetics of TiO2 Colloidal Dispersions 39 2.4.4 Solvent Effect on Dispersion Stability 48 2.5 Summary 52 2.6 References 54 Chapter 3 Visible Light Induced Photocatalytic Degradation of the Organic Dye in Aqueous AHP-TiO2 Suspension 62 3.1 Introduction and Research Goal 62 3.2Backgrounds 64 3.2.1 TiO2 photocatalysis 64 3.2.2 Limitations in TiO2 photocatalytic processes 65 3.2.3 Extend the spectral response of TiO2 to the visible region 66 3.2.4 Effect of surface property on dye-sensitized TiO2 69 3.3Experimental details 70 3.3.1 Materials 70 3.3.2 Characterization 70 3.3.3 Light source and photoreactor 71 3.3.4 Photocatalyticdegradation procedures 71 3.4 Results and discussion 75 3.4.1 Effect of Alkaline H2O2 Pre-treatment on TiO2 Surface Property and photocatalytic degradation 75 3.4.2 pH Effect and Dye Concentration on Dye Photodegradation Rate 82 3.4.3 Effect of pH and ionic strength on TiO2 suspensions 86 3.4.4 Effect of Photodegradation Atmosphere 90 3.4.5 Effect of Scavenger Agents and Reactive Oxygen Species Determination 92 3.5 Summary 94 3.6 References 95 Chapter 4 Effect of Ferric Ions on the Formation of Reactive Oxygen Species from Photocatalytic TiO2 Pretreated with Alkaline Hydrogen Peroxide under Visible Light 101 4.1 Introduction and Research Goal 101 4.2 Backgrounds 103 4.2.1 The importance of transition metal ions in TiO2 photocatalyst system 103 4.2.2 Proposed Kinetics Model 105 4.3 Experimental details 108 4.3.1 Materials 108 4.3.2 Photocatalytic degradation procedures 109 4.4 Results and discussion 109 4.4.1 Effect of different metal ions on untreated and AHP treated TiO2 for dye photodegradation 109 4.4.2 Effect of O2 in TiO2 photocatalysis 119 4.4.3 Syngeretic effect in different dye mixtures 121 4.5 Summary 127 4.6 References 129 Chapter 5 A comparative Study of Different Techniques for Determining Hydroxyl Radical Species and Evidence for Reactive Oxygen Species (ROS) Involved in TiO2 Dye Sensitization System 133 5.1 Introduction and Research Goal 133 5.2 Backgrounds 135 5.2.1 Hydroxyl radical formation 135 5.2.2 Hydroxyl radical detection 135 5.2.3 Hydroxyl radicals near TiO2 surface or that to the bulk solution 138 5.3 Experimental 140 5.3.1 Reagents 140 5.3.2 Instruments 140 5.3.3 Photocatalytic degradation procedures 141 5.3.4 Hydroxyl radical analysis 141 5.3.4.1 Methanol oxidation (HPLC assay) 141 5.3.4.2 Coumarin derivation (Fluorescence assay) 142 5.3.5 Light intensity calculation 143 5.4 Results and discussion 145 5.4.1 OH radical detection methods 145 5.4.2 Effect of methanol concentrations on the formation rate of formaldehyde 147 5.4.3 Fluorescence assay 150 5.4.4 Formation concentration of formaldehyde and 7 HC under visible light irradiation 151 5.4.5 Photodegradation of SRB with or without methanol under visible light irradiation 154 5.4.5 Comparison of OH• detection methods (methanol oxidation and coumarin derivation) 157 5.5 Summary 159 5.6 References 160 Chapter 6 Conclusions and Future Outlook 163 6.1 Conclusions 163 6.2 Future outlook 166   List of Illustrations Figure 2.1 Schematic illustration of double layer in a liquid (Zhang, 2014). 11 Figure 2.2 The net interaction energy as a function of the interacting distance. van der Waals interaction energy (blue dashedline), electrostatic interaction energy (red line), total Derjaguin-Landau-Verwey-Overbeak (DLVO) interaction energy (solid black line) (Zhang, 2014). 13 Figure 2.3 Schematic illustration of different mechanisms to stabilize colloidal solution. 14 Scheme 2.1 Preparation of titanium nanotubes by alkaline liquid phase hydrothermal process and titanium nanoparticles by alkaline hydrogen peroxidetreatment. 21 Figure 2.4 Hydrodynamic size and TiO2 colloidal stability in different experimental condition for the pretreatment of TiO2 surface. (a) NaOH concentration (100 mM H2O2); (b) H2O2 concentration (8 M NaOH); (c) pretreatment time; (d) pretreatment time for photocatalytic degradation of anionic dye. [TiO2] = 0.5 g/L, pH = 3, [SRB] = 10 μM 22 Figure 2.5 Raman spectra of ST-01 and AHP-ST-01. 27 Figure 2.6 XRD spectra of TiO2 powders: ST-01 and AHP-ST-01. 28 Figure 2.7 AFM images of TiO2 surface. (a), (b) ST-01; (c), (d) AHP-ST-01. 29 Figure 2.8 TEM images of (a) ST-01 and (b) AHP-ST-01 NPs. Particle size distributions of (c) ST-01 and (d) AHP-ST-01 NPs in aqueous solution. Insets: photographs of ST-01 and AHP-ST-01 suspension where a green laser beam passes through. 30 Figure 2.9 Plot of (h)1/2 versus photon energy (h) of AHP-treated TiO2 NPs with [TiO2] = 0.15 g/L in water. Inset: raw UV–vis DRS spectrum. 31 Figure 2.10 FT-IR spectra of TiO2 powders: (a) Degussa P25, (b) ST-01, and (c) AHP-ST-01. All samples were dried at 70 °Cfor 12 h and milled into tiny powders for measurements. 32 Figure 2.11 TGA curves of TiO2 samples: (a) Degussa P25 and (b) AHP-ST-01. 33 Figure 2.12 O 1s XPS spectra of ST-01 and AHP-ST-01. 34 Scheme 2.2 Plausible structure and remove temperature of chemisorbed and physisorbed water layers I, II, and III on the TiO2 surface 36 Figure 2.13 Zeta potentials of TiO2 NPs (ST-01 and AHP-ST-01) suspended in water with mass concentration of 0.5 g/L as a function of pH. 38 Figure 2.14 Effect of NaCl concentration on different TiO2 NPs distribution.(●)ST-01, (▲)Degussa P25, and(□)AHP-ST-01. [TiO2] = 1.5 g/L, pH = 2. 42 Figure 2.15 Size variation of AHP-TiO2 NPs for different NaCl concentrations as time increase during. (a) pH = 2, (b) pH = 3. [TiO2] = 1.5 g/L. 43 Figure 2.16 Attachment efficiencies as a function of NaCl concentration. (a) pH = 2, (b) pH = 3. [TiO2] = 1.5 g/L. 44 Figure 2.17 Modeling the colloidal stability of TiO2suspensions at different temperature conditions using the DLVO theory. (a) ST-01, (b) AHP-ST-01. 47 Figure 2.18 Variation of the hydrodynamic size of AHP-ST-01 NPs in water. [TiO2] = 0.5 g/L, pH = 3. 49 Figure 2.19. The transmittance change (D24%) of the suspension of AHP-TiO2NPs with different solvent after setting for 24 h. [TiO2] = 0.5 g/L. 51 Scheme 3.1 Schematic diagram of TiO2 photocatalysis mechansim with organic pollutant. 65 Scheme 3.2 Limitation in application of TiO2-based particles for photocatalytic degradation of organic pollutants (Dong et al., 2015). 66 Figure 3.1 Comparison of the photocatalystic mechanism under (A) UV light and (B) visible light irradiation (Wu et al., 1998). 68 Figure 3.2 Transmittance spectra of 2.5-mm Hoya Y-48 optical glass filter (Hoya Corp. USA) with wavelength. The Hoya Y-48 optical filter is a sharp cut filter that cuts off as much as possible of the wavelength light shorter than 480 nm while transmitting as much of longer wavelength light as possible. The two yellow cutoff filters were placed to completely remove any radiation below 480 nm and to ensure illumination by visible light only. 73 Figure 3.3 Schematic diagram of the photoreactor for dye degradation. 74 Figure 3.4 UV-Vis spectral changes of SRB in different TiO2 suspensions as a function of time of irradiation. (a) untreated ST-01, (b) water-mediated ST-01, (c) AHP-ST-01, (d) Pseudo-first-order kinetic fits for visible-light photodegradation of SRB in different colloidal solutions for (●) ST-01, (▲) water pretreated 36 hrs ST-01, and (□) AHP-ST-01., [TiO2] = 1.5 g/L, [SRB] = 10 M, pH = 3. 77 Figure 3.5 Variation of the transmittance change (Dx%) of TiO2NPs in aqueous suspension after setting for 24 h. ST-01 (●) and AHP-ST-01(□), [TiO2] = 0.5 g/L, pH = 3. 78 Figure 3.6 Effect of TiO2 content on particle size distribution. 79 Figure 3.7 Effect of TiO2 content on photocatalytic degradation of SRB. [SRB] = 10 μΜ, pH = 3 80 Figure 3.8 Photoluminescence spectra of ST-01 (Dash line) and AHP-ST-01 (Solid line) NPs dispersed ethanol, [TiO2] = 0.2 g/L, pH = 3. 81 Figure 3.9 Photodegradation rate constant and adsorbed amount of SRB in AHP-TiO2 suspension as a function of pH. Light source:1000 W Xenon lamp (λ >480 nm), [AHP-TiO2] = 1.5 g/L, [SRB] = 10 mM. 83 Figure 3.10 Effect of SRB concentration on the light transmittance at 563 nm where the maximum absorbance of SRB was obtained. 84 Figure 3.11 Photocatalytic degradation of SRB in aqueous suspension of AHP-TiO2 NPs with different SRB concentrations under visible light irradiaiton(λ >480 nm). [AHP-TiO2] = 1.5 g/L, pH = 3. 85 Figure 3.12 (a)Effect of different TiO2 on the photodegradation of Sulforhodamine B as a function of irradiation time at pH 2 and 3., (b) amount of SRB adsorbed on different TiO2 NPs at pH 2 and 3 87 Figure 3.13 Effect of chloride concentration on the photodegradation of Sulforhodamine B as a function of irradiation time at pH 2. ST-01 (■), Degussa P25 (▲), AHP-ST-01 (●). 88 Scheme3.3 Preparation of high water dispersible TiO2 NPs by alkaline H2O2 and photocatalytic mechanism in AHP-TiO2 with chloride anion under visible light irradiation. 89 Figure 3.14 Photocatalytic degradation of SRB as a function of irradiation time.(a) ST-01 in N2 condition, (b) ST-01 in air condition, (c) AHP-ST-01 in de-aerated condition, (d) AHP-ST-01 in air condition, (e) AHP-ST-01 in oxygen condition. Light source: 1000 W Xenon lamp (λ >480 nm), [TiO2] = 1.5 g/L, [SRB] = 10 μM (150 mL), pH = 3, N2, O2 flow rate = 100 ml/min. 91 Figure 3.15 Photocatalytic degradation of SRB in different NaN3 concentration as a function of irradiation time. (a) 0 mM, (b) 0.5 mM, (c) 1 mM, (d) 1.5 mM. Light source:1000 W Xenon lamp (λ >480 nm), [AHP-TiO2] = 1.5 g/L, [SRB] = 10 μM (150 mL), pH = 3, N2 flow rate = 100 ml/min. 93 Figure 4.1 The electron transfer pathway on Addition of Cu2+ in TiO2 aqueous dispersions under visible irradiation (Chen et al., 2002). 104 Figure 4.2 Enhancement of Fe3+ on the degradation rate of SRB. (▼) Degussa P25 + 10 μM FeCl3, (□) AHP-ST-01, (▲) Degussa P25, (▽) AHP-ST-01 + 10 μM FeCl3, and (◇) AHP-ST-01 + 100 μΜ FeCl3 (☆) AHP-ST-01 + 1000 μΜ FeCl3. Light source: 1000 W xenon lamp (λ >480 nm), [TiO2] = 1.5 g/L, [SRB] = 10 μM, and pH=3. 111 Figure 4.3 Photodegradation rate constant and adsorption amount of SRB in AHP-ST-01-Fe3+ suspension as a function of pH. Light source: 1000 W Xenon lamp (λ > 480 nm), [TiO2] = 0.5 g/L, [Fe3+] = 83.3 mM, [SRB] = 10 mM. 112 Scheme 4.1 Dye photosensitization mechanism for AHP-ST-01 with Fe3+ ions. 113 Figure 4.4 The fitting curves of Fe3+ concentration effect on the photodegradation rate of SRB dye with different dosages of AHP-ST-01, (■) [TiO2] = 1.5 g/L, (△) 1.0 g/L, (◆) 0.5 g/L, (▽) 0.25 g/L, (●) 0.1 g/L. 116 Figure 4.5 Linearized Haldane’s equation of Fe3+ concentration effect on the photodegradation rate of SRB dye with different dosages of AHP-ST-01, (■) [TiO2] = 1.5 g/L, (△) 1.0 g/L, (◆) 0.5 g/L, (▽) 0.25 g/L, (●) 0.1 g/L. 117 Figure 4.6 Photocatalytic degradation of SRB as a function of irradiation time. ST-01(•) and AHP-ST-01 + FeCl3 250 μM (□) in (a), (c) de-aerated and (b),(d) aerated condition. Light source: 1000 W xenon lamp (λ >480 nm), [TiO2] = 1.5 g/L, [SRB] = 10 μM, and pH=3. 120 Figure 4.7 Time courses of SRB and MB concentrations during photodegradation with 10 M SRB and MB. (a) Single MB analysis, (b) MB analysis in mixtures (SRB/MB, concentration ratio is 1), (c) SRB analysis in mixtures (SRB/MB, concentration ratio is 1), (d) Single SRB analysis. [AHP-TiO2] = 0.5 g/L, [Fe3+] = 83.3 M, pH = 3 123 Figure 4.8 (a) Time courses of dye concentration during photodegradation with different MB concentrations and 10 μM SRB. (b) Effect of different dye concentration ratio on dye photodegradation rate. Note: all C/Co values were obtained by the maximum absorption in the whole absorption spectrum in order to evaluate the degradation efficiency of SRB and MB (SRB Abs: 563 nm, MB Abs: 662 nm). [AHP-TiO2] = 0.5 g/L, [Fe3+] = 83.3 M, pH = 3 124 Scheme 4.2 Mixing dye photosensitization mechanism for different TiO2 colloidal solution. (a) Commercial TiO2, (b) AHP-ST-01 with Fe3+ ions. 126 Figure 5.1 (a) HPLC and (b) PL spectra observed in AHP-ST-01-Fe3+ suspension with 1 M CH3OH and 1 mM coumarin under visible light irradiation. [TiO2] = 0.5 g/L, [Fe3+] = 83.3 μM, [SRB] = 10 M, pH = 3. 146 Figure 5.2 Formaldehyde calibration curve obtained by plotting UV intensity measured at the position of formaldehyde in HPLC spectra as a function of the concentration of the formaldehyde. 147 Figure 5.3 (a) HCHO formation and (b) dye photodegradation rate as a function of methanol concentration in TiO2 photosensitization. [TiO2] = 0.5 g/L, [Fe3+] = 83.3 μM , [SRB] = 10 M, pH = 3 149 Figure 5.4 (a) The PL intensity of standard compound 7-hydroxycoumarin (7HC) with various concentrations in10 μM SRB aqueous solution. (b) The PL calibration curve is obtained by measuring PL intensity at 454 nm as a function of various concentration of standard 7HC. 151 Figure 5.5 Effect of illumination time on the concentration of (a) HCHO and (b) 7-Hydroxycoumarin (7 HC, C9H6O3) formed by photocatalytic oxidation of CH3OH (1 M) and coumarin (1 mM) in aqueous suspension of different catalyst, (○) ST-01, (▲) Degussa P25, (▽) AHP-ST-01, (■) AHP-ST-01-Fe3+, (◆) Degussa P25-Fe3+. [TiO2] = 0.5 g/L, [Fe3+] = 83.3μM, [SRB] = 10 M, pH = 3. 153 Figure 5.6 Photocatalytic degradation of SRB with or without methanol in various TiO2 NPs after 20 min photoreaction under visible light irradiation. [TiO2] = 0.5 g/L, μM, [SRB] = 10 M, pH = 3. 155 Figure 5.7 Apparent photonic efficiency of OH radical formation measured for various TiO2 photocatalysts by photocatalytic oxidation of methanol yielding formaldehyde method is plotted as a function of that obtained by the coumarin fluorescence probe method. 158 Figure 6.1 The research in the dissertation and future outlook. 168   List of Tables Table 2.1 Comparison of electrostatic and steric stabilization. 14 Table 2.2 Physicochemical properties of different TiO2 NPs 35 Table 2.3 OH groups concentration determined by TGA and XPS 37 Table 2.4 Hydrodynamic size growth rate and attachment efficiency () of AHP-TiO2 NPs in different ph and ionic strength. 45 Table 2.5 Zeta potential values for AHP-TiO2 at different temperature. 46 Table 2.6 The dielectric constant of different solvents. 50 Table 4.1 Photodegradation rate (min-1) of SRB in different kind of metal ions (250 μM) under visible light. 110 Table 4.2 The kinetic parameters of Fe3+ ion effect on dye photosensitization with different TiO2 dosages. 118 Table 4.3 Photosensitization of different dyes over AHP-ST-01 with Fe3+ ions under visible light irradiation. 125 Table 5.1 Redox potential of major oxidizing agents at pH 0. 135 Table 5.2 Different analytical methods for detecting OH• 139 Table 5.3 Summary of photocatalytic activity in different TiO2 suspensions. 156

    Ai, Z., Wu, N., Zhang, L. 2014 A nonaqueous sol–gel route to highly water dispersible TiO2nanocrystals with superior photocatalytic performance. Catal. Today 224, 180–187.
    Ates, M., Daniels, J., Arslan, Z., Farah, I.O. 2013 Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: assessment of nanoparticle aggregation, accumulation, and toxicity. Environ. Monit. Assess. 185, 3339–3348.
    Baalousha, M., Ju-Nam, Y., Cole, P.A., Gaiser, B., Fernandes, T.F., Hriljac, J.A., Jepson, M.A., Stone, V., Tyler, C.R., Lead, J.R. 2012 Characterization of cerium oxide nanoparticles-Part 1: Size measurements. Environ. Toxicol. Chem. 31(5), 983–993.
    Banerjee, G., Car, S., Scott-Craig, J.S., Hodge, D.B., Walton, J.D. 2011 Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose. Biotechnol. Biofuels 4, 16–30.
    Bavykin, D.V., Parmon, V.N., Lapkin, A.A., Walsh, F.C. 2004 The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J. Mater. Chem. 14(22), 3370–3377.
    Caruso, R.A., Antonietti, M., Giersig, M., Hentze, H.P., Jia, J.G. 2001 Modification of TiO2 network structures using a polymer gel coating technique. Chem. Mat. 13(3), 1114–1123.
    Chen, X., Li, C., Gra¨tzel, M., Kosteckid, R., Maoe, S.S. 2012a Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 41, 7909–7937.
    Chen, Y., Huang, Y.,Li, K. 2012b Temperature effect on the aggregation kinetics of CeO2 nanoparticles in monovalent and divalent electrolytes. J. Environ. Anal. Toxicol. 2, 1–5.
    Cheng, L., Wang, C., Feng, L., Yang, K., Liu, Z. 2014 Functional nanomaterials for phototherapies of cancer. Chem. Rev. 114, 10869–10939.
    Di Paola, A., Bellardita, M., Palmisano, L., Barbierikova, Z., Brezova, V. 2014 Influence of crystallinity and OH surface density on the photocatalytic activity of TiO2 powders. J. Photochem. Photobiol., A 273, 59–67.

    Dong, H.R., Zeng, G.M., Tang, L., Fan, C.Z., Zhang, C., He, X.X., He, Y. 2015 An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Research 79, 128–146.
    Erdem, B., Hunsicker, R.A., Simmons, G.W., Sudol, E.D., Dimonie, V.L., El-Aasser, M.S. 2001 XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 17(9), 2664–2669.
    Farrokhpay, S., Morris, G.E., Fornasiero, D., Self, P. 2005 Influence of polymer functional group architecture on titania pigment dispersion. Colloids and Surfaces A: Physicochem. Eng. Aspects 253(1-3), 183–191.
    Gajovic, A., Stubicar, M., Ivanda, M., Furic, K. 2001 Raman spectroscopy of ball-milled TiO2. J. Mol. Struct. 563, 315–320.
    García-García, S., Jonsson, M., Wold, S. 2006 Temperature effect on the stability of bentonite colloids in water. J. Colloid Interface Sci. 298, 694–705.
    Guo, J., Cai, X., Li, Y., Zhai, R., Zhou, S., Na, P. 2013 The preparation and characterization of a three-dimensional titanium dioxide nanostructure with high surface hydroxyl group density and high performance in water treatment. Chem. Eng. J. 221, 342–352.
    Han, C., Wang, Y., Lei, Y., Wang, B., Wu, N., Shi, Q., Li, Q. 2015 In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano. Res. 8, 1199–1209.
    Hotze, E.M., Phenrat, T., Lowry, G.V. 2010 Nanoparticle aggregation: Challenges to understanding transport and reactivity in the environment. J. Environ. Qual. 39, 1909–1924.
    Hubbe, M.A., Rojas, O.R. 2008 Colloidal stability and aggregation of lignocellulosic materials in aqueous suspension: A review. BioResources 3, 1419–1491.
    Jassby, D., Budarz, J.F., Wiesner, M. 2012 Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles. Environ. Sci. Technol. 46(13), 6934–6941.

    Jing, J., Feng, J., Li, W., Yu, W.W. 2013 Low-temperature synthesis of water-dispersible anatase titanium dioxide nanoparticles for photocatalysis. J. Colloid Interface Sci. 396, 90–94.
    Kasuga, T., Kondo, H., Nogami, M. 2002 Apatite formation on TiO2 in simulated body fluid. J. Cryst. Growth 235, 235–240.
    Keller, A.A., Wang, H.T., Zhou, D.X., Lenihan, H.S., Cherr, G., Cardinale, B.J., Miller, R., Ji, Z.X. 2010 Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol. 44(6), 1962–1967.
    Khalid, N.R., Ahmed, E., Hong, Z., Sana, L., Ahmed, M. 2013 Enhanced photocatalytic activity of grapheneeTiO2 composite under visible light irradiation. Curr. Appl. Phys. 13, 659–663.
    Khin, M.M., Nair, A.S., Babu, V.J., Murugan, R., Ramakrishna, S. 2012 A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5(8), 8075–8109.
    Kim, J.H.,Lee, H.I. 2004 Effect of surface hydroxyl groups of pure TiO2 and modified TiO2 on the photocatalytic oxidation of aqueous cyanide. Korean J. Chem. Eng. 21, 116–122.
    Kinyanjui, J.M., Hatchett, D.W., Smith, J.A., Josowicz, M. 2004 Chemical synthesis of a polyaniline/gold composite using tetrachloroaurate. Chem. Mat. 16(17), 3390–3398.
    Kitano, M., Nakajima, K., Kondo, J.N., Hayashi, S., Hara, M. 2010 Protonated titanate nanotubes as solid acid catalyst. J. Am. Chem. Soc. 132(19), 6622–6623.
    Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J., Lead, J.R. 2008 Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 27, 1825–1851.
    Lee, C.H., Park, H.B., Park, C.H., Lee, S.Y., Kim, J.Y., McGrath, J.E., Lee, Y.M. 2010 Preparation of high-performance polymer electrolyte nanocomposites through nanoscale silica particle dispersion. J. Power Sources 195(5), 1325–1332.
    Li, G., Li, L., Boerio-Goates, J., Woodfield, B.F. 2005 High purity anatase TiO2 nanocrystals: Near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. J. Am. Chem. Soc. 127(24), 8659–8666.

    Liu, N., Chen, X., Zhang, J., Schwank, J.W. 2014 A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catal. Today 225, 34–51.
    Liu, P., Duan, W., Liang, W., Li, X. 2009 Thermokinetic studies of the groups on TiO2 surface. Surf. Interface Anal. 41, 394–398.
    Mahl, D., Diendorf, J., Meyer-Zaika, W., Epple, M. 2011 Possibilities and limitations of different analytical methods for the size determination of a bimodal dispersion of metallic nanoparticles. Colloids Surf. A: Physicochem. Eng. Aspects 377(1-3), 386–392.
    Mishra, A.S., Misra, A.K., Tripathi, M.K., Santra, A., Prasad, R., Jakhmola, R.C. 2004 Effect of sodium hydroxide plus hydrogen peroxide treated mustard (Brassica campestris) straw based diets on rumen degradation kinetics (In sacco), fermentation pattern and nutrient utilization in sheep. Asian-Aust. J. Anim. Sci. 17(3), 355–365.
    Missana, T., Adell, A. 2000 On the applicability of DLVO theory to the prediction of clay colloids stability. J. Colloid Interface Sci. 230, 150–156.
    Mudunkotuwa, I.A.,Grassian, V.H. 2010 Citric acid adsorption on TiO2 nanoparticles in aqueous suspensions at acidic and circumneutral pH: Surface coverage, surface speciation, and its impact on nanoparticle-nanoparticle interactions. J. Am. Chem. Soc. 132, 14986–14994.
    Mueller, R., Kammler, H.K., Wegner, K., Pratsinis, S.E. 2003 OH surface density of SiO2 and TiO2 by thermogravimetric analysis. Langmuir 19, 160–165.
    Nie, L.H., Yu, J.G., Li, X.Y., Cheng, B., Liu, G., Jaroniec, M. 2013 Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde. Environ. Sci. Technol. 47(6), 2777–2783.
    Nosaka, A.Y., Fujiwara, T., Yagi, H., Akutsu, H., Nosaka, Y. 2004 Characteristics of water adsorbed on TiO2 photocatalytic systems with increasing temperature as studied by solid-state 1H NMR spectroscopy. . J. Phys. Chem. B 108, 9121–9125.

    Nosaka, A.Y., Nishino, J., Fujiwara, T., Ikegami, T., Yagi, H., Akutsu, H., Nosaka, Y. 2006 Effects of thermal treatments on the recovery of adsorbed water and photocatalytic activities of TiO2 photocatalytic systems. J. Phys. Chem. B 110(16), 8380–8385.
    Nosaka, A.Y., Nosaka, Y. 2005 Characteristics of water adsorbed on TiO2 photocatalytic surfaces as studied by 1HNMR spectroscopy. Bull. Chem. Soc. Jpn. 78, 1595–1607.
    Ocando, C., Tercjak, A., Mondragon, I. 2011 Surfactant addition effects on dispersion and microdomain orientation in SBS triblock copolymer/alumina nanoparticle composites. Eur. Polym. J. 47, 1240–1249.
    Pan, L., Zou, J.J., Zhang, X., Wang, L. 2011 Water-mediated promotion of dye sensitization of TiO2 under visible light. J. Am. Chem. Soc. 133(26), 10000–10002.
    Paola, A.D., Bellardita, M., Palmisano, L., Barbieriková, Z., Brezová, V. 2014 Influence of crystallinity and OH surface density on the photocatalytic activity of TiO2 powders. J. Photochem. Photobiol., A 273, 59–67.
    Peiro, A.M., Peral, J., Domingo, C., Domenech, X., Ayllon, J.A. 2001 Low-temperature deposition of TiO2 thin films with photocatalytic activity from colloidal anatase aqueous solutions. Chem. Mater. 13, 2567–2573.
    Petosa, A.R., Jaisi, D.P., Quevedo, I.R., Elimelech, M., Tufenkji, N. 2010 Aggregation and deposition of engineered nanomaterials in aquatic environments: Role of physicochemical interactions. Environ. Sci. Technol. 44, 6532–6549.
    Qin, Y., Sun, L., Li, X., Cao, Q., Wang, H., Tang, X.,Ye, L. 2011 Highly water-dispersible TiO2 nanoparticles for doxorubicin delivery: effect of loading mode on therapeutic efficacy. J. Mater. Chem 21, 18003-18010.
    Ren, J., Wang, W.M., Lu, S.C., Shen, J.,Tang, F.Q. 2003 Characteristics of dispersion behavior of fine particles in different liquid media. Powder Technol. 137(1-2), 91–94.
    Sehgal, A., Lalatonne, Y., Berret, J.F., Morvan, M. 2005 Precipitation-redispersion of cerium oxide nanoparticles with poly(acrylic acid): Toward stable dispersions. Langmuir 21(20), 9359–9364.
    Sen, S., Ram, M.L., Roy, S., Sarkar, B.K. 1999 The structural transformation of anatase TiO2 by high-energy vibrational ball milling. J. Mater. Res. 14, 841–848.
    Shankar, M.V., Kako, T., Wang, D.,Ye, J. 2009 One-pot synthesis of peroxo-titania nanopowder and dual photochemical oxidation in aqueous methanol solution. J. Colloid Interface Sci. 331, 132–137.
    Sherman, R.L., Ford, W.T. 2005 Semiconductor nanoparticle/polystyrene latex composite materials. Langmuir 21(11), 5218–5222.
    Smith, A.M., Mohs, A.M., Nie, S. 2009 Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol. 4, 56–63.
    Solovitch, N., Labille, J., Rose, J., Chaurand, P., Borschneck, D., Wiesner, M.R., Bottero, J.Y. 2010 Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. Environ. Sci. Technol. 44, 4897–4902.
    Song, S., Jing, L., Li, S., Fu, H., Luan, Y. 2008 Superhydrophilic anatase TiO2 film with the micro- and nanometer-scale hierarchical surface structure. Mater. Lett. 62, 3503–3505.
    Soria, J., Sanz, J., Sobrados, I., Coronado, J.M., Maira, A.J., Hernandez-Alonso, M.D., Fresno, F. 2007 FTIR and NMR study of the adsorbed water on nanocrystalline Anatase. J. Phys. Chem. C 111, 10590–10596.
    Sun, J., Guo, L.H., Zhang, H., Zhao, L. 2014 UV irradiation induced transformation of TiO2 nanoparticles in water: Aggregation and photoreactivity. Environ. Sci. Technol. 48, 11962–11968.
    Suttiponparnit, K., Jiang, J., Sahu, M., Suvachittanont, S., Charinpanitkul, T., Biswas, P. 2011 Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res. Lett. 6, 1–8.
    Suzuki, T.S., Sakka, Y., Nakano, K., Hiraga, K. 2001 Effect of ultrasonication on the microstructure and tensile elongation of zirconia-dispersed alumina ceramics prepared by colloidal processing. J. Am. Ceram. Soc. 84(9), 2132–2134.

    Thompson, T.L., Yates, J.T. 2006 Surface science studies of the photoactivation of TiO2-new photochemical processes. Chem. Rev. 106(10), 4428–4453.
    Tian, F., Wu, Z., Tong, Y., Wu, Z., Cravotto, G. 2015 Microwave-assisted synthesis of carbon-based (n, fe)-codoped TiO2 for the photocatalytic degradation of formaldehyde. Nanoscale Res. Lett. 10, 1–12.
    Tiwari, J.N., Tiwari, R.N., Kim, K.S. 2012 Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater Sci. 57, 724–803.
    Viala, P., Bourgeat-Lamy, E., Guyot, A., Legrand, P., Lefebvre, D. 2002 Pigment encapsulation by emulsion polymerisation, redespersible in water. Macromol. Symp. 187, 651–661.
    Wang, J., Liu, X., Li, R., Qiao, P., Xiao, L., Fan, J. 2012 TiO2 nanoparticles with increased surface hydroxyl groups and their improved photocatalytic activity. Catal. Commun. 19, 96–99.
    Wang, J.Y., Liu, Z.H., Cai, R.X. 2008 A new role for Fe3+ in TiO2 hydrosol: Accelerated photodegradation of dyes under visible light. Environ. Sci. Technol. 42, 5759–5764.
    Wang, P., Wang, D., Li, H., Xie, T., Wang, H., Do, Z. 2007 A facile solution-phase synthesis of high quality water-soluble anatase TiO2 nanocrystals. J. Colloid Interface Sci. 314(1), 337–340.
    Wang, Y., Duo, F., Peng, S., Jia, F., Fan, C. 2014 Potassium iodate assisted synthesis of titanium dioxide nanoparticles with superior water-dispersibility. J. Colloid Interface Sci. 430, 31–39.
    Yang, Q.Z., Troczynski, T. 1999 Dispersion of alumina and silicon carbide powders in alumina sol. J. Am. Ceram. Soc. 82(7), 1928–1930.
    Yao, X.M., Tan, S.H., Huang, Z.R., Jiang, D.L. 2005 Dispersion of talc particles in a silica sol. Mater.Lett. 59(1), 100–104.
    Yin, B., Hakkarainen, M. 2011 Core-shell nanoparticle-plasticizers for design of high-performance polymeric materials with improved stiffness and toughness. J. Mater. Chem. 21, 8670–8677.
    Yu, J., Yu, J.C., Hoa, W., Jianga, Z. 2002 Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films. New J. Chem 26, 607–613.
    Yu, J.R., Grossiord, N., Koning, C.E., Loos, J. 2007 Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 45(3), 618-623.
    Zhang, W. 2014 Naonoparticle Aggregation: Principles and modeling.
    Zhao, D., Chen, C., Wang, Y., Ji, H., Ma, W., Zang, L., Zhao, J. 2008 Surface modification of TiO2 by phosphate: Effect on photocatalytic activity and mechanism implication. J. Phys. Chem. C 112(15), 5993–6001.
    Zou, H., Lin, Y.S. 2004 Structural and surface chemical properties of sol-gel derived TiO2-ZrO2 oxides. Applied Catalysis a-General 265(1), 35–42.
    Zukerman, R., Vradman, L., Titelman, L., Zeiri, L., Perkas, N., Gedanken, A., Landau, M.V., Herskowitz, M. 2010 Effect of SBA-15 microporosity on the inserted TiO2 crystal size determined by Raman spectroscopy. Mater. Chem. Phys. 122, 53–59.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE