研究生: |
陳雪芬 |
---|---|
論文名稱: |
探討低溫下耐寒及不耐寒蝴蝶蘭基因表現的差異 |
指導教授: |
林彩雲
|
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 低溫 、蝴蝶蘭 、過氧化氫酵素 |
外文關鍵詞: | catalase, low temperature, Phalaenopsis |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
低溫會導致蝴蝶蘭葉子黃化,影響生長和發育,甚至導致整株植物死亡,影響產值。因此我們利用cDNA篩減方法 (cDNA subtraction) 來選殖與蝴蝶蘭低溫表現相關的基因,從而瞭解蘭花在低溫下的分子機制。
我們將耐寒的蝴蝶蘭TS97及不耐寒的蝴蝶蘭TS365,分別經4℃黑暗處理 (TS97-4℃ & TS365-4℃) 和25℃黑暗處理 (TS97-25℃ & TS365-25℃) 而控制組則不經任何處理 (TS97-L & TS365-L)。兩天之後,取其葉子的total RNA來進行刪減篩選。所篩選的cDNA片段中,發現含有catalase、glyceraldehyde-3-phosphate dehydrogenase、ATP/ADP translocator、及polyubiquitin之部分基因。前人研究指出,低溫會誘導抗氧化酵素的表現,因此我們針對catalase探討其於低溫下是否亦有增加的現象。
以北方印跡法 (Northern blot) 來分析catalase在不同條件處理下的表現量,結果發現TS365 catalase的mRNA在4℃黑暗中會顯著減少,而且在4℃黑暗中,TS365 catalase mRNA之表現量比TS97者少。再以catalase 蛋白質活性分析,亦發現在黑暗中4℃ TS365的活性明顯比TS97者少。雖然catalase在4℃並未被誘導增加,但不耐寒的TS365在4℃下比TS97的表現明顯降低,不耐寒植株catalase在低溫時表現的下降與寒害的形成可能有關。
Phalaenopsis frequently suffer from chilling injury under low temperature. The chilling injury may cause leaf chlorosis and growth retardation. Chilling may also result in plant death and economic loss. To gain more insights of molecular mechanisms of chilling tolerance, genes possibly associate with low temperature condition in Phalaenopsis were isolated using the cDNA subtraction method. Chilling-resistant TS97 and chilling-sensitive TS365 plants were treated with either 4℃/dark (TS97-4℃ & TS365-4℃) or 25℃/dark (TS97-25℃ & TS365-25℃), but control plants were in normal condition (TS97-L & TS365-L). After two days, total RNA was isolated from leaves and used for cDNA subtraction. Partial cDNA fragments of catalase、polyubiquitin glyceraldehyde-3-phosphate dehydrogenase and ATP/ADP translocator genes were obtained. It was reported that some antioxidant enzymes were induced at low temperature. So we focused on the expression of catalase in different conditions.
The catalase mRNA levels were analyzed with Northern blots. We found that the expression of TS365 catalase mRNA was significant reduced at 4℃ in the dark. At 4℃ in the dark TS365 catalase mRNA level was also less than that of TS97. Moreover, the catalase activity in TS365 was lower than that in TS97 at 4℃ in the dark. Although catalase was not induced by low temperaure, a significant reduction was found in the expression of TS365 at 4℃. The reduction of catalase gene expression in TS365 maybe related to chilling injury.
Abstract-----------------------------------------ii
謝誌--------------------------------------------iii
名詞縮寫-----------------------------------------iv
前言----------------------------------------------1
材料與方法---------------------------------------10
結果---------------------------------------------20
討論---------------------------------------------25
參考文獻-----------------------------------------31
表-----------------------------------------------40
圖-----------------------------------------------45
附錄---------------------------------------------56
林讚標. 1988. 台灣蘭科植物. 南天出版社.
邱明森, 吳俊謙和楊登華 1999. 台灣糖業研究所,研究試驗報告
85-86期: 121-124.
麥愛堂, 郭長生,黃定鼎和陳韡松. 1999. 蝴蝶蘭寒害之型態、生理及生化改變之研究 台糖產業科技研究計畫期末報告.
Abler, M. L. and J. G. Scandalios. 1993. Isolation and characterization of a genomic sequence encoding the maize Cat3 catalase gene. Plant Mol. Biol. 22: 1031-1038.
Alonso, A., C. S. Queiroz and A. C. Magalhaes. 1997. Chilling stress leads to increased cell membrane rigidity in roots of coffee (Coffea arabica L.) seedlings. Biochim. Biophys. Acta. 323: 75-84.
Ashworth, E. N. 1989. Freezing injury in deciduous fruit crops: opportunities for chemical manipulation. Acta. Hort. 239: 175-186.
Bol ger, T. P., D. R. Upchurch and B. L. McMichael. 1992. Temperature effects on cotton root hydraulic conductance. Envir. Exp. Bot. 32 : 49-54.
Bray, E. A. 1988. Drought- and ABA- induced changes in polypeptide and mRNA accumulation in tomato leaves. Plant Physiol. 88: 1210-1214.
Burke, M. J., L. V. Gusta, H. A. Quamme, C. J. Weiser and P. H. Li. 1976. Freezing and injury in plants. Ann. Rev. Plant Physiol. 27: 507-528.
Chu, C. and T. M. Lee. 1992. Regulation of chilling tolerance in rice seedling by plant hormones. Korean J. Crop Sci. 37: 288-298.
Danyluk, J., M. Houde, E. Rassart, F. Sarhan. 1994. Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant gramineae species. FEBS Lett. 344: 20-24.
Dunn, M. A., M. A. Hughes, L. Zhang, R. S. Pearce, A. S. Quigley and P. L. Jack. 1991. Nucleotide sequence and molecular analysis of the low temperature induced cereal gene, BLT4. Mol. Gen. Genet. 229: 389-394.
Esposito, L. A., S. Melov, A. Panov, B. A. Cottrell and D. C. Wallace. 1999. Mitochondrial disease in mouse results in increased oxidative stress. Proc. Natl. Acad. Sci. U. S. A. 96: 4820-4825.
Finley, D., E. Ozkaynak and A. Varshavsky. 1987. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation and other stresses. Cell 48: 1035-1046.
Forde, B. J., H. C. M. Whitehead and J. A. Rowley. 1975. Effect of light intensity and temperature on photosynthetic rate, leaf starch content and ultrastructure of Paspalum dilatatum. Aust. J. Plant Physiol. 2: 185-195.
Foyer, C. H. and B. Halliwell. 1976. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133: 21-25.
Fridovich, I. 1986. Superoxide dismutases. Adv. Enzymol. 58: 62-97.
Fucci, L., C. Oliver, M. Coon and E. Stadtman. 1983. Inactivation of key metabolic enzymes by mixed-function oxidation reactions: Possible implication in protein turnover and aging. Proc. Natl. Acad. Sci. U. S. A. 80: 1521-1525.
Gilmour, S. J., N. N. Artus and M. F. Thomashow. 1992. cDNA sequence analysis and expression of two cold-regulated gene of Arabidopsis thaliana. Plant Mol. Biol. 18: 13-21.
Graham, D. and B. D. Patterson. 1982. Responses of plants to low, nonfreezing temperatures: proteins, metabolism, and acclimation. Annu. Rev. Plant Physiol. 33: 347-372.
Guy, C. L., K. J. Niemi and R. Brambl. 1985. Altered gene expression during cold acclimation of spinach. Proc. Natl. Acad. Sci. U. S. A. 82: 3673-3677.
Guy, M. G. 1989. Phospholipid, sterol composition and ethylene production in relation to choline-induced chill-tolerance in mung bean (Vigan radiata L. Wilcz) during a chilling-warm cycle. J. Exp. Bot. 40: 369-374.
Hughes, M. A. and R. S. Pearce. 1988. Low temperature treatment of barley plants cause altered gene expression in shoot meristems. J. Exp. Bot. 39: 1461-1467.
Ito, Y., P. J. Pagano, K. Tornheim, P. Brecher and R. A. Cohen. 1996. Oxidative stress increases glyceraldehyde-3-phosphate dehydrogenase mRNA levels in isolated rabbit aorta. Am. J. Physiol. 270: H81-87.
Jarillo, J. A., J. Capel, A. Leyva, J. M. Martinez-Zapater and J. Salinas. 1994. Two related low-temperature-inducible genes of Arabidopsis encode proteins showing high homology to 14-3-3 proteins, a family of putative kinase regulators. Plant Mol. Biol. 25: 693-704.
Jeong, M. J., S. C. Park, H. B. Kwon and M. O. Byun. 2000. Isolation and characterization of the gene encoding glyceraldehyde-3-phosphate dehydrogenase. Biochem. Biophys. Res. Commun. 278: 192-196.
Kane, D. O., V. Gill, P. Boyd and R. Burdon. 1996. Chilling, oxidative stress and antioxidant responses in Arabidopsis thaliana callus. Planta 198: 371-377.
Kazuoka, T. and K. Oeda. 1994. Purification and characterization of COR85-oligomeric complex from cold-acclimate spinach. Plant Cell Physiol. 35: 601-611.
Kurkela, S. and M. Franck. 1990. Cloning and characterization of cold- and ABA- inducible Arabidopsis genes. Plant Mol. Biol. 15: 137-144.
Lang, V., E. Mantyla, B. Welin, B. Sunberg and E. T. Palva. 1994. Alteration in water status, endogenous abscisic acid content, and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana. Plant Physiol. 104: 1341-1349.
Lee, D. H. and C. B. Lee. 2000. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci. 159: 75-85.
Lee, T. M., H. S. Lur and C. Chu. 1993. Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings. I. Endogenous abscisic acid levels. Plant Cell Environ. 16: 481-490.
Leopold, A. C., and M. E. Musgrave. 1979. Respiratory changes with chilling injury of soybeans. Plant Physiol. 64: 702-705.
Levine, A., R. Tenhaken, R. Dixon and C. Lamb. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583-593.
Levitt, J. 1980. Responses of plants to environmental stresses. In Chilling, freezing and high temperature stresses. Vol. 1. Academic, Press New York.
Lewis, D. A. 1956. Protoplasmic streaming in plants sensitive and insensitive to chilling temperature. Sceince 124: 75-76.
Long, S. P., T. M. East and N. R. Baker. 1983. Chilling damage to photosynthesis in young Zea mays. L. effects of light and temperature variation on photosynthetic CO2 assmilation. J. Exp. Bot. 34: 177-188.
Lyons, J. M. 1973. Chilling injury in plants. Ann. Rev. Plant Physiol. 24: 445-466.
MacCarthy, J. J. and P. K. Stumpf. 1980. The effect of different temperatures on fatty-acid synthesis and polyunsaturation in cell suspension cultures. Planta 147: 389-395.
Markhart, III A. H. 1986. Chilling injury: a review of possible causes. HortScience 21: 1329-1333.
Markhart, III A. H., E. L. Fiscus, A. W. Naylor and P. J. Kramer. 1979. Effects of temperature on water and ion transport in soybean and broccoli systems. Plant Physiol. 64: 83-87.
Martin, B. and D. R. Ort. 1985. The recovery of photosynthesis in tomato subsequent to chilling exposure. Photosyn. Res. 6: 121-132.
McClung, C. R. 1997. Regulation of catalases in Arabidopsis. Free Radic. Biol. Med. 23: 489-496.
McWillin, J. R., P. J. Kramer and R. L. Musser. 1982. Temperature-induced water stress in chilling-sensitive plants. Aust. J. Plant Physiol. 9: 343-352.
Navari-Izzo, F., M. F. Quartacci and C. M. Sgherri. 1996. Superoxide generation in relation to dehydration and rehydration. Biochem. Soc. Trans. 24: 447-451.
Neales, T. F. and C. S. Hew. 1975. Two types of carbon assimilation in tropical orchids. Planta 123: 303-306.
Neven, L. G., D. W. Haskell, A. Hofig, Q. B. Li and C. L. Guy. 1993. Characterization of a spinach gene responsive to low temperature and water stress. Plant Mol. Biol. 21: 291-305.
Niu, X., H. Wang, R. A. Bressan and P. M. Hasegawa. 1994. Molecular cloning and expression of a glyceraldehyde-3-phosphate dehydrogenase gene in desert halophyte, Atriplex nummularia L. Plant Physiol. 104: 1105-1106.
Osmond, C. B. 1978. Crassulacean acid metabolism: a curiosity in context. Annu. Rev. Plant Physiol. 29: 379-414.
Peeler, T. C. and A. W. Naylor. 1988. A comparison of the effects of chilling on leaf gas exchange in pea (Pisum sativum L.) and cucumber (Cucumis sativus L.). Plant Physiol. 86: 143-146.
Polidoros, A. N. and J. G. Scandalios. 1997. Response of the maize catalase to light. Free Radic. Biol. Med. 23: 497-504.
Prasad, T. K., M. D. Anderson, B. A. Martin and C. R. Stewart. 1994. Evidence for chilling-induced oxidative stress in maize seedling and a regulatory role for hydrogen peroxide. Plant Cell 6: 65-74.
Purvis, A. C. and R. L. Shewfelt. 1993. Does the alternative pathway ameliorate chilling injury in sensitive plants tissues? Physiol. Plant. 88: 712-718.
Raison, J. K. and E. A. Chapman. 1976. Membrane phase changes in chilling-sensitive Vigna radiata and their significance to growth. Aust. J. Plant Physiol. 3: 291-299.
Razmaev, I. I. 1965. After-effect of low temperature above 0℃ on nitrogen metabolism in wheat and corn. Izv. Sib. Otol. Akad. Nauk., SSSR Ser. Biol. Med. Nauk. 1: 59-63.
Redinbaugh, M. G., G. J. Wadsworth and J. G. Scandalios. 1988. Characterization of catalase transcripts and their differential expression in maize. Biochim. Biophys. Acta. 951: 104-116.
Redinbaugh, M. G., M. Sabre and J. G. Scandalios. 1990. Expression of the maize Cat3 catalase gene is under the influence of a circadian rhythm. Proc. Natl. Acad. Sci. U. S. A. 87: 6853-6857.
Redkar, R. J., R. W. Herzog and N. K. Singh. 1998. Transcriptional activation of the Aspergillus nidulans gpdA promoter by osmotic signals. Appl. Environ. Microbiol. 64: 2229-2231.
Rikin, A., D. Atsmond and C. Gilter. 1979. Chilling injury in cotton (Gossipium hirsutum L.): Preventing by abscisic acid. Plant Cell Physiol. 20: 1537-1546.
Sambrook, J., E. F. Fritsch and T. Maniatis. 1989. Molecular Cloning. A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Scandalios, J. G. 1993. Regulation and properties of plant catalases. In: C. Foyer, P. Mullineaux, (eds.) Photooxidative Stress in Plants. CRC Press, Boca Raton, FL.
Shikanai, T., T. Takeda, H. Yamauchi, S. Sano, K. I. Tomizawa, A.Yokota and S. Shigeoka. 1998. Inhibition of ascorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chloroplasts. FEBS Letters 428: 47-51.
Skadsen, R. W., P. Schulze-Lefert and J. M. Herbst. 1995. Molecular cloning, characterization and expression analysis of two catalase isozyme genes in barley. Plant Mol. Biol. 29: 1005-1014.
Smith, P. G. and J. E. Dale. 1988. The effects of root cooling and excision treatments on the growth of primary leaves of Phaselous vulgaris L. : rapid and reversible increases in abscisic acid content. New Phytol 110: 293-300.
St. John, J. and M. N. Christiansen. 1976. Inhibition of linolenic acid synthesis and modification of chilling resistance in cotton seedlings. Plant Physiol. 57: 257-259.
Steponkus, P. L. 1984. Role of the plasma membrane in freezing injury and cold acclimation. Ann. Rev. Plant Physiol. 35: 543-584.
Stroeher, V. L., J. G. Boothe and A. G. Good. 1995. Molecular cloning and expression of a turgor-responsive gene in Brassica napus. Plant Mol. Biol. 27: 541-551.
Sugiyama, T., M. R. Schmitt, S. B. Ku and G. E. Edwards. 1979. Differences in cold lability of pyruvate phosphate dikinase among C-4 species. Plant Cell Physiol. 20: 965-971.
Sweet, H. R. 1980. The genus Phalaenopsis. Day Printing Corp., Calif.
Taylor, A. O. and A. S. Craig. 1971. Plants under climatic stress. II. Low temperature, high light effects on chloroplast ultrastructure. Plant Physiol. 47: 719-725.
Terrados, J. and J. A. Lopez-Jimenez. 1996. Fatty acid composition and chilling resistance in the green alga Caulerpa prolifera (Forrskal) Lamouroux (Chlorophyta, Caulerpales). Biochem. Mol. Biol. Int. 39: 863-869.
Thomashow, M. F. 1994. Arabidopsis thaliana as a model for studying mechanism of plant cold tolerance. In E. Meyerowitz, C. Somerville, eds, Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp: 807-834.
Tjus, S. E., B. L. Moller and H. V. Scheller. 1998. Photosystem I is an early target of photoinhibition in barley illuminated at chilling temperatures. Plant Physiol. 116: 755-764.
Tokuhisa, J. and J. Browse. 1999. Genetic engineering of plant chilling tolerance. Genet. Eng. 21: 79-93.
Uemura, M. and S. Yashida. 1984. Involvement of plasma membrane alterations in cold acclimation of winter rye seedlings (Secale cereale L. cv. puma). Plant Physiol. 75: 818-826.
Vigh, L., I. Horvath, P. R. Van Hasselt and P. J. C. Kuiper. 1985. Effect of frost hardening on lipid and fatty acid composition of contrasting thylakoid membranes in two wheat varieties of contrasting hardeniness. Plant Physiol. 79: 756-759.
von Sonntag, C. 1987. The Chemical Basis of Radiation Biology. Talor and Francis, London.
Ward, D. A. and D. W. Lawlor. 1990. Abscisic acid may mediate the rapid thermal acclimatization of photosynthesis in wheat. J. Exp. Bot. 41: 309-314.
Welin, B. V., A. Olson, M. Nylander and E. T. Palva. 1994. Characterization and differential expression of dhn/lea/rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana. Plant Mol. Biol. 26: 131-144.
White, A. J., A. Dunn, K. Brown and M. A. Hughes. 1994. Comparative analysis of genomic sequence and expression of a lipid transfer protein gene family in winter barley. J. Exp. Bot. 45: 1885-1892.
Wilhelm, K. S., and M. F. Thomashow. 1993. Arabidopsis thaliana cor15b, an apparent homologue of cor15a, is strongly responsive to cold and ABA, but not drought. Plant Mol. Biol. 23: 1073-1077.
Wilson, R. F. and R. W. Rinne. 1976. Effects of freezing and cold storage on phospholipids in developing soybean cotyledons. Plant Physiol. 57: 270-273.
Wise, R. R. and A. W. Naylor. 1987. Chilling-enhanced photooxidation. Evidence for the role of singlet oxygen and superoxide in breakdown of pigments and endogenous antioxidants. Plant Physiol. 83: 278-282.
Woodbury, W., A. K. Spencer and M. A. Stahmann. 1971. An improved procedure using ferricyanide for detecting catalase isozymes. Anal. Biochem. 44: 301-305.
Zeevaart, J. and R. Creelman. 1988. Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39: 439-473.
Zhang, L., M. A. Dunn, R. S. Pearce and M. A. Hughes. 1993. Analysis of organ specificity of a low temperature responsive gene family in rye (Secale cereale L.). J. Exp. Bot. 44: 1787-1793.