研究生: |
黎振安 Li, Chen-An |
---|---|
論文名稱: |
The Study of Fluid Flow and Heat Transfer Inside Rectangular PDMS microchannels PDMS矩形微通道內流體流動與熱傳之研究 |
指導教授: |
黃智永
Huang, Chih-Yung 劉通敏 Liou, Tong-Miin |
口試委員: |
楊建裕
吳宗信 饒達仁 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 121 |
中文關鍵詞: | PDMS微流道 、矩形管 、流體行為 、熱傳 、溫度螢光感測法 、微粒子影像測速法 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本論文主旨在探討微流道內之流體行為及熱傳現象,並與巨觀尺寸下之結果相比較,主要量測之物理量為流體的速度及溫度。分別利用微粒子影像測速法及溫度螢光分子感測法進行實驗,其中以微粒子影像測速法量測微直管與90。彎管流道內的速度場,並以溫度螢光分子感測法量測微流道內流場深度方向整 體之平均溫度分佈及微流道壁面溫度,此兩法皆具有非侵入式及全域性量測之特性,提供一個不干擾流場情形之量測結果。
以往溫度螢光分子感測法大都運用於航太工程相關領域中,偏向巨觀尺寸範圍之量測,直到近幾年來逐漸有學者將此技術轉移至微流場量測上。以往微機電系統溫度量測裝置都需要透過繁瑣的製程步驟來完成,而有別於傳統微機電系統溫度量測方式,溫度螢光分子製作方法簡易,且可提供高解析度之流場中全域性溫度分佈。本研究考慮不同螢光感測分子搭配適合之溶劑及黏著劑,製做出螢光溫度感測溶液及塗料,利用螢光溫度感測分子對溫度之光化學特性,即可開發出應用於微流道溫度量測之工具,且同時利用逐點校正法彌補傳統單點校正之不足,增加量測準確性及量測範圍,建立更完整的測量方法。
本論文以PDMS微矩形直管流道及微矩形90。彎管流道量測其內部流場速度向量變化並加以探討,在微直管部分以去離子水為工作流體,在雷諾數為0.37時,量測出在深寬比0.67及0.33之流道內部由發展區至完全發展區之速度分佈,空間解析度可至近壁2 μm之位置。且觀察到PDMS表面疏水性使邊界出現滑移現象,而滑移長度介於1.9~3.3 μm間,由中心位置往側壁推算80%距離內之範圍與解析解相當穩合。而由工作流體溫度變化發現在深寬比0.12之直管微流道中,熱發展長度為Gz-1/2~0.384,且在熱完全發展區中Nu為2.20;而在微彎管部分則是在雷諾數27時以分層方式量測不同深度平面速度分佈,並成功建構出其二次流情形,且由軸向及橫向溫度變化也可看出二次流使流體產生混合導致轉角後溫度驟升的效果。本研究得到二次流對微流道熱傳之影響,並可應用於往後微熱交換器之設計上。
ABSTRACT
This study aims to examine the velocity and temperature fields in various microchannels and compares with theory. With novel molecule based temperature sensors, both surface temperature and fluid temeperature profiles inside the microchannels were acquired. 2-D velocity profiles were analyzed through μ-PIV techniques. These two techniques both provide non-intrusive and global measurements.
The molecule based temperature sensor was widely used in aerodynamic engineering in the past decades, but applications in micro fluidic system measurements were just began in recent years. Differentiates from traditional micro temperature sensors prepared by complicated MEMS fabrication procedure, the molecule based temperature sensors simplifies the processes of sensor preparation as well as the installation. By selecting different kinds of luminescent molecule along with various solvent and binder, the molecular based temperature sensors have been investigated through theirs photochemistry properties and they have been applied to the measurement of micro fluidic system. At the same time, pixel-by-pixel calibration method was utlized to increase the accuracy and extend the range of temperature measurement.
This study also performed on velocity measurement in rectangular microchannel with straight and 90。 sharp bend structures and DI water was used as working fluid. The μ-PIV system was demonstrated to be capable of acquiring velocity profiles at the distance 2 μm away from the side wall from the developing region to fully developed region in straight microchannels with aspect ratios of 0.67 and 0.33 at Reynolds number of 0.37. The slip length was calculated in the range of 1.9~3.3μm at fully developed region due to the hydrophobicity of PDMS material. The velocity profile calculated by Navior-Stokes equations with non-slip boundary condition agreed with the experimental results from center to 80% of the channel. The temperature distribution was measured in straight microchannels with aspect ratio of 0.12 and bottom side was heated as uniform wall temperature thermal boundary condition. Nusselt number variation in the channel was analyzed from thermal developing region to thermal fully developed region. Results showed thermal entrance length was Gz-1/2~0.384 and Nu reached 2.20 in the fully developed region. The velocity profiles of flow passing through a 90。 sharp bend were also measured at Reynolds number of 27.66 and 46.62. Secondary flow structure has been observed with multiple layers measurements around the corner along the depth of the microchannels. The temperature distributions of axial(x) and crosswise(y) directions before and after the corner show fluid mixing due to secondary flow effect. This study not only measured and analyzed the flow and thermal fields in microchannels but also provided essential information for future applications of micro-heat-exchanger.
參考文獻
[1]. T. Matsunaga, M. Esashi. Acceleration Switch with Extended Holding Time Using Squeeze Film Effect for Side Airbag Systems. Sensors and Actuators. 2002, Vol. A 100, pp. 10-17.
[2]. H. J. Park, H. W. Nam, B. S. Song, J. L. Choi, H. C. Choi, J. C. Park, M. N. Kim, J. T. Lee, J. H. Cho. Design of Bi-directional and Multi-channel Miniaturized Telemetry Module for Wireless Endoscopy. 2"d Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology. 2002, Vol. Poster 151, pp. 273-276.
[3]. Y. Wang, J. Zhe, B. T. F. Chung, P. Dutta. A Rapid Magnetic Particle Driven Micromixer. Microfluid Nanofluid. 2008, Vol. 4, pp. 375-389.
[4]. S. Hardt, K. S. Drese, V. Hessel, F. Schomfeld. Passive Micromixers for Applications in the Microreactor. Microfluid Nanofluid. 2005, Vol. 1, pp. 108-118.
[5]. F. Jiang, K. S. Drese, S. Hardt, M. Kupper, F. Schonfeld. Helical Flows and Chaotic Mixing in Curved Micro Channels. J. of American Institute of Chemical Engineers. 2004, Vol. 50, pp. 2297-2305.
[6]. R. K. Shah, A. L. London. Laminar Flow Forced Convection in Ducts. New York : Academic Press, 1978.
[7]. R. K. Shah, M. S. Bhatti. Handbook of Single-Phase Convective Heat Transfer. New York : Wiley, 1987.
[8]. D. L. Hitt, Confocal Imaging of Fluid Interfaces in Microchannel Geometries. Technology and Education of Microscopy. 2004.
[9]. R. Lima, S. Wada, K. Tsubota, T. Yamaguchi. Confocal Micro-PIV Measurements of Three-dimensional Profiles of Cell Suspension Flow in a Square Micro-channel. Meas. Sci. Technol. 2006, Vol. 17, pp. 797-808.
[10]. L., Kuddusi. "Prediction of Temperature Distribution and Nusselt Number in Rectangular Microchannels at Wall Slip Condition for all Version of Constant Wall Temperature". Int. J. of Thermal Science. 2007, Vol. vol. 46, pp. 998-1010.
[11]. L. Kuddusi, E. Cetegen. "Prediction of Temperature Distribution and Nusselt Number in Rectangular Microchannels at Wall Slip Condition for all Version of Constant Heat Flux". Int. J. of Heat and Fluid Flow. 2007, Vol. vol. 28, pp. 777-786.
[12]. P. Lee, S. V. Garimella. "Thermally Developing Flow and Heat Transfer in Rectangular Micro-channels of Different Aspect Ratios". Int. J. of Heat and Mass Transfer. 2006, Vol. vol. 49, pp. 3060-3067.
[13]. G. Tunc, Y. Bayazitoglu. "Heat Transfer in Rectangular Micro-channels". Int. J. of Heat and Mass Transfer. 2002, Vol. vol. 45, pp. 765-773.
[14]. H. D. M. Hettiarachchi, M. Golubovic, W. M. Worek, W. J. Minkowycz. "Three-dimensional Laminar Slip Flow and Heat Transfer in a Rectangular Micro-channel with Constant Wall Temperature". Int. J. of Heat and Mass Transfer. 2008, Vol. vol. 51, pp. 5088-5096.
[15]. N. G. Hadjiconstantinou, O. Simek. "Constant Wall Temperature Nusselt in Micro and Nano-channels". American Society of Mechanical Engineers (ASME). 2002, Vol. vol. 124, pp. 356-364.
[16]. M. Renksizbulut, H. Niazmand, G. Tercan. Slip-flow and Heat Transfer in Rectangular Microchannels with Constant Wall Temperature. Int. J. of Thermal Science. 2006, Vol. 45, pp. 870-881.
[17]. R. B. Peterson, Numerical Modeling of Conduction Effects in Microscale Counterflow Heat Exchangers. Microscale Thermophys. 1999, Vol. 3, pp. 17-30.
[18]. G. Maranzana, I. Perry, D. Maillet. Mini- and Micro-channels: Influence of Axial Conduction in the Walls. Int. J. of Heat and Mass Transfer. 2004, Vol. 47, pp. 3993-4004.
[19]. G. Gamrat, M. Favre-Marinnet, D. Asendrych. Conduction and Entrance Effects on Laminar Liquid Flow and Heat Transfer in Rectangular Micro-channels. Int. J. of Heat and Mass Transfer. 2005, Vol. 48, pp. 2943-2954.
[20]. Z. Y. Guo, Z. X. Li. Size Effect on Microscale Single-Phase Flow and Heat Transfer. Int. J. of Heat and Mass Transfer. 2003, Vol. 46, pp. 149-159.
[21]. S. Shen, J. L. Xu, J. J. Zhou, Y. Chen. "Flow and Heat Transfer in Microchannels with Rough Wall Surfaces". Energy Conversion and Management. 2006, Vol. vol. 47, pp. 1311-1325.
[22]. S. G. Kandlikar, S. Joshi, S. Tian. Effect of Surface Roughness on Heat Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small Diameter Tubes. Heat Transfer Engineering. 2003, Vol. 3, pp. 4-16.
[23]. H. Y. Wu, P. Cheng. An Experimental Study of Convective Heat Transfer in Silicon Micro-channels with Different Surface Conditions. Int. J. of Heat and Mass Transfer. 2003, Vol. 46, pp. 2547-2556.
[24]. C. Y. Lin. "An Experimental Study of Single/Two Phase Flow and Heat Transfer in Micro-channels". Ph.D. Thesis. 2010 ,Ntional Sun Yat-Sen University, Taiwan R.O.C..
[25]. X. F. Peng, G. P. Peterson. "Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures". Int. J. of Heat and Mass Transfer. 1996, Vol. vol. 39, pp. 2599-2608.
[26]. H. S. Ko, C. W. Liu, C. Gau, C. S. Yang. "Fabrication and Design of a Heat Transfer Micro-channel System by a Low Temperature MEMS Technique". J. of Micromechanics and Microengineering. 2007, Vol. vol. 17, pp. 983-993.
[27]. H. S. Ko, C. Gau. "Local Heat Transfer Process and Pressure Drop in a Micro-channel Integrated with Arrays of Temperature and Pressure Sensors". Microfluid Nanofluid. 2011, Vol. vol. 10, pp. 563-577.
[28]. P. Chamarthy, S. V. Garimella, S. T. Wereley. Measurement of the Temperature Non-uniformity in a Micro-channel Heat Sink Using Microscale Laser-Induced Fuorescence. Int. J. of Heat and Mass Transfer. 2010, Vol. 53, pp. 3275-3283.
[29]. P. Lee, S. V. Garimella, D. Liu. "Investigation of Heat Transfer in Rectangular Microchannels". Int. J. of Heat and Mass Transfer. 2005, Vol. vol. 48, pp. 1688-1704.
[30]. G. L., Morini. "Single-phase Convective Heat Transfer in Microchannels: a Review of Experimental Results". Int. J. of Thermal Science. 2004, Vol. vol. 43, pp. 631-651.
[31]. J. R. Weske, Experimental Investigation of Velocity Distribution Downstream of Single Duct Bends. NACATN. 1948, pp. 1471-1475.
[32]. M. D. Kelleher, D. L. Flentie, R. J. McKee. An Experimental Study of the Secondary Flow in a Curved Rectangular Channel. American Society of Mechanical Engineering. 1980, Vol. 102, pp. 92-96.
[33]. Y. Yeh, H. Z. Cummins. Localize Fluid Flow Measurement with An He-Ne Laser Spectrometer. Appl. Phys. Letters. 1964, Vol. 10, pp. 176-178.
[34]. R. J. Adrain, Particle-image Techniques for Experimental Fluid Mechanics. Annual Review of Fluid Mechanics. 1991, Vol. 23, pp. 261-304.
[35]. C. D. Meinhart, A. K. Prasad, R. J. Adrian. "A Parallel Digital Processor System for Particle Image Velocimetry". Meas. Sci. Technol. 1993, Vol. vol. 4, pp. 619-626.
[36]. J. G. Satiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, R. J. Adrian. "A Micro-particle Image Velocimetry System". Experiments in Fluids. 1998, Vol. vol. 25, pp. 316-319.
[37]. J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, R. J. Adrian. "A Particle Image Velocimetry System for Microfluidics". Experiments in Fluids. 1998, Vol. vol. 25, pp. 316-319.
[38]. K. Kikiuchi, O. Mochizuki. "Micro-PIV Measurements in Micro-tubes and Proboscis of Mosquito". J. of Fluid Science and Technology. 2008, Vol. vol. 3, pp. 975-986.
[39]. C. D. Meinhart, S. T. Wereley, M. H. B. Gary. "Volume Illumination for Two-dimensional Particle Image Velocimetry". Meas. Sci. Technol. 2000, Vol. vol. 11, pp. 809-814.
[40]. C. D. Meinhart, S. T. Wereley. "The Theory of Diffraction-limited Resolution in Microparticle Image Velocimetry". Meas. Sci. Technol. 2003, Vol. vol. 14, pp. 1047-1053.
[41]. N. T. Nguyen, S. T. Wereley. "Fundamentals and Applications of Micro-fluidics". s.l. : MEMS Microelectromechanical Systems Series, 2002.
[42]. T. M. Liou, S. J. Lai, M. W. Wang. Investigation of Secondary Flow in 180degree Rectangular Micro-curved Channel with Micro-PIV. Hsing-Chu : s.n.
[43]. A. P. Sudarsan, V. M. U. A. McFerrin. Multi-vortex Micro-mixing. New York, USA : Department of Chemical Engineering, Texas A&M University, College Station, 2005.
[44]. T. Liu, J. P. Sullivan. "Pressure and Temperature Sensitive Paints". Berlin : Germany: Springer-Verlag, 2005.
[45]. C. Y. Huang, H. Sakaue, J. W. Gregory, J. P. Sullivan. "Molecular Sensors for MEMS". 40th Aerospace Sciences Meeting & Exhibit (Reno, NV.). 2002,, pp. AIAA-2002-0256.
[46]. C. Y. Huang, J. W. Gregory, H. Nagai, K. Asai, J. P. Sullivan. "Molecular sensors in microturbine measurement". ASME International Mechanical Engineering Congress and Exposition. 2006, Vols. IMECE2006-13814, pp. 45.
[47]. Y. Sato, G. Irisawa, M. Ishizuka, K. Hishida, M. Maeda. Visualization of Convective Mixing in Micro-channel by Fluorescence Imaging. Meas. Sci. Technol. 2003, Vol. 14, pp. 114-121.
[48]. D. Ross, M. Gaitan, L. E. Locascio. "Temperature Measurement in Microfluidic System Using a Temperature-Dependent Fluorescent Dye". Anal. Chem. 2001, Vol. vol. 73, pp. 4117-4123.
[49]. R. Fu, B. Xu, D. Li. "Study of the Temperature Field in Micro-channels of a PDMS Chip with Embedded Local Heater Using Temperature-dependent Fluorescent Dye". Int. J. of Thermal Sciences. 2006, Vol. vol. 45, pp. 841-847.
[50]. J. Zhou, H. Yan, Y. Zheng, H. Wu. "Highly Fluorescent Poly(dimethylsiloxane) for On-Chip Temperature Measurements". Advanced Functional Materials. 2009, Vol. vol. 19, pp. 19, 324-329.
[51]. R. Samy, T. Glawdel, C. L. Ren. "Method for Microfluidic Whole-Chip Temperature Measurement Using Thin-Film Poly(dimethylsiloxane)/Rhodamine B". Anal. Chem. 2008, Vol. vol. 80, pp. 80, 369-375.
[52]. M. I. J. Stich, S. Nagl, O. S. Wolfbies, U. Henne, M. Schaeferling. "A Dual Luminescent Sensor Material for Simultaneous Imaging of Pressure and Temperature on Surfaces". Advanced Functional Materials. 2008, Vol. vol. 18, pp. 1399-1406.
[53]. S. Someya, S. Yoshida, Y. Li, K. Okamoto. "Combined Measurement of Velocity and Temperature Distributions in Oil Based on the Luminescent Lifetimes of Seeded Particles". Meas. Sci. Technol. 2009, Vol. vol. 20, pp. 1-9.
[54]. M. Raffel, C. Willert, S. Wereley, J. Kompenhans. "Particle Image Velocimetry-A Particle Guide". s.l. : 2nd Edition, Springer, 2005.
[55]. S. T. Wereley, L. Gui. "A correlation-based central difference image correction (CDIC) method and application in a four-roll-mill". Exp. Fluids. 2003, Vol. vol.34, pp. 42-51.
[56]. L. Gui, J. M. Seiner. "An improvement in the 9-point central difference image correction method for digital particle image velocimetry recording evaluation". Meas. Sci. Technol. 2004, Vol. vol. 15, pp. 1598-1964.
[57]. S. Inoue, K. Spring. Video Microscopy:The Fundamentals. New York : Pleum, 1997.
[58]. M. I. J. Stich, O. S. Wolfbeis. "Fluorescence Sensing and Imaging Using Pressure-Sensitive Paints and Temperature-Sensitive Paints". Springer Ser Fluoresc. 2008, Vol. vol. 5, pp. 429-461.
[59]. D. C. Tretheway, C. D. Meinhart. A Generating Mechanism for Apparent Fluid Slip in Hydrophbic Micro-channels. Physics of Fluids. 2004, Vol. 16, pp. 1509-1515.
[60]. X. Zheng, Z. Silber-Li. Measurement of Velocity Profiles in a Rectangular Micro-channel with Aspect Ratio a = 0.35. Exp. Fluids. Vol. 44, pp. 951-959.
[61]. C. Y. Huang, J. W. Gregory, J. P. Sullivan. "Micro-channel Pressure Measurement Using Molecular Sensors". J. of Micro-electromechanical Systems. 2007, Vol. vol. 16, pp. 777-785.
[62] J. Y. Jung, H. Y. Kwak "Fluid Flow and Heat Transfer in Microchannels with rectangular cross section". Heat and Mass Transfer. 2008, Vol. vol. 44, pp. 1041-1049[62] J. Y. Jung, H. Y. Kwak "Fluid Flow and Heat Transfer in Microchannels with rectangular cross section". Heat and Mass Transfer. 2008, Vol. vol. 44, pp. 1041-1049
[63] P. X. Jiang, M. H. Fan, G. S. Si, Z. P. Ren "Thermal Hydraulic Performance of Small Scale Micro-channel and Porous Media Heat-exchangers". Int. J. of Heat and Mass Transfer. 2001, Vol. 44, pp. 1039-1051
[64] T. Y. Lin "Experimental Analysis on Forced Convective Heat Transfer Characteristics in Micro Tubes by the Method of Liquid Crystal Thermography".. 2007, Ph.D. Thesis , National Central University, Taiwan R.O.C..
[65] G. Tunc, Y. Bayazitoglu "Heat Transfer in Rectangular Microchannels". Int. J. of Heat and Mass Transfer 2002, Vol.45,pp 765-773