簡易檢索 / 詳目顯示

研究生: 鍾志育
Chung, Chih-Yu
論文名稱: 鈦添加量及燒結時間對無壓液相燒結鑽石銅基複合材料之界面微結構及熱性質的影響
Effect of Titanium Addition and Varying Sintering Time on the Interface Structure and Thermal Properties of Diamond/Cu Composites Fabricated by Pressureless Liquid Phase Sintering
指導教授: 林樹均
Lin, Su-Jien
口試委員: 李勝隆
洪健龍
曹春暉
朝春光
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 143
中文關鍵詞: 複合材料熱傳導係數熱膨脹係數液相燒結法
外文關鍵詞: Composite, Thermal conductivity, Coefficient of thermal expansion, Liquid phase sintering
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用無壓液相燒結法製備鑽石銅基複合材料。由於金屬銅在鑽石表面上的潤濕性不佳,因此選擇添加活性元素至基材中,希望藉此改善界面間的潤濕性,進而得到具有良好的熱傳導性質的複合材料。而經由實驗結果得知,以鈦元素的添加具有最好的提升界面潤濕的效果。更進一步研究鑽石體積分率變化、鈦添加量多寡,以及燒結時間對於整體複合材料熱性質的影響,並且在改變燒結時間的實驗中,利用 SEM 以及 TEM 的觀測,分析鑽石與基材間的界面成長方式,以建立界面成長的機制。由界面微結構分析指出,界面層主要是由碳化鈦所組成,且界面的厚度會隨燒結時間及鈦含量的增加而變厚,對於複材的熱傳導性質有著決定性的影響。所製備出的複合材料,在鑽石體積分率 50%、鈦添加量 0.6 at% 的條件下,其熱傳導係數可高達 620 W/mK,熱膨脹係數為 6.9 ppm/K;而在鑽石顆粒雙粒徑的添加系統中,鑽石總體積分率 60% 的複材,其熱傳導值更可高達 683 W/mK。經由理論計算,本實驗製備的複合材料熱傳導值可高達理論值的 77 ~ 86%,熱膨脹係數則介於 Kerner upper line 與 Kener lower line 之間,代表此製成製備的複合材料性質良好,幾乎可與理論值吻合。另外,由於此製程為一無壓燒結製程,無須加壓設備,將可大幅降低設備成本,並且製程簡便,可用於大量生產,使此鑽石/銅基複合材料在電子構裝散熱材的應用上更具潛力。


    In this study, minor-addition elements such as Si, Co, Cr, W, Mo and Ti were added into matrix to improve the wettability between the diamonds and Cu matrix. The pressureless liquid phase sintering technique adopted in this study provides a low-cost method for producing diamond/Cu composites with high potential for industrial mass-production. Thermal properties of the diamond/Cu-Ti composites fabricated by pressureless liquid phase sintering at 1373 K with variations in Ti contents and in sintering times were thoroughly investigated. SEM and TEM analyses were
    utilized to study the growth mechanism of the TiC at the interface between diamonds and Cu matrix. A probable mechanism of the interface structure formation was proposed. The composites exhibited thermal conductivity as high as 620 W/m•K for 50 vol% diamond/Cu-0.6 at% Ti composite with diamond particle size of 300 µm. This value comes up to 85% of the thermal conductivity calculated by Hasselman and Johnson (H-J) theoretical analysis. Under these conditions a suitable coefficient of thermal expansion of 6.9 ppm/K was obtained.

    目錄 摘要…………………………………………………………………………I Abstract…………………………………………………………………III 致謝.............................................................................................................IV 目錄……………………………………………………………………….VI 圖目錄…………………………………………………………………...XI 表目錄.....................................................................................................XVII 壹、前言…………………………………………………………………….1 貳、文獻回顧……………………………………………………………….3 2.1. 散熱的重要性…………………………………………………..3 2.2. 散熱材料的發展………………………………………………..7 2.2.1. 傳統散熱材料………………………………………….7 2.2.2. 先進散熱材料………………………………………...10 2.3. 金屬基複合材料………………………………………………15 2.3.1. 金屬基複合材料常見製程…………………………….15 2.3.1.1. 攪拌鑄造法…………………………………..15 2.3.1.2. 熱壓法………………………………………..16 2.3.1.3. 氣壓浸透法…………………………………..17 2.3.1.4. 擠壓鑄造法…………………………………..17 2.3.1.5. 火花電漿燒結法……………………………..18 2.3.2. 金屬基複合材料之理論性質..........................................23 2.3.2.1. 密度................................................................23 2.3.2.2. 比熱................................................................23 2.3.2.3. 熱膨脹係數....................................................24 2.3.2.4. 熱傳導係數....................................................26 2.4. 影響鑽石複合材料熱傳導性質的因素....................................28 2.4.1. 鑽石與基材間界面接合及潤濕性的問題...................28 2.4.2. 活性元素添加對潤濕性的影響...................................32 2.4.3. 添加活性元素至複合材中改善界面接合的例子.......38 2.4.3.1. 鑽石/鋁基複合材料.......................................38 2.4.3.2. 鑽石/銀基複合材料.......................................43 2.4.3.3. 鑽石/銅基複合材料.......................................46 2.4.4. 界面厚度對熱傳導性質的影響...................................49 2.4.5. 雙粒徑強化材添加的影響...........................................54 參、實驗方法與步驟...................................................................................56 3.1 實驗設計與流程.........................................................................56 3.1.1. 成份來源及性質...........................................................56 3.1.2. 實驗設計原理...............................................................56 3.1.3. 實驗步驟.......................................................................57 3.1.3.1. 乾式混粉與冷壓成形.....................................57 3.1.3.2. 無壓真空液相燒結.........................................57 3.2. 複合材料性質分析....................................................................62 3.2.1. 試片表面結構及微結構觀察.......................................62 3.2.2. 緻密度量測...................................................................62 3.2.3. 熱膨脹係數量測...........................................................63 3.2.4. 熱傳導係數量測...........................................................64 3.2.5. XRD 分析......................................................................67 3.2.6. TEM 分析......................................................................67 肆、結果與討論...........................................................................................68 4.1. 乾式混粉前之組成粉末觀察....................................................68 4.2. 活性元素選擇............................................................................72 4.3. 活性元素鈦添加量的影響........................................................76 4.3.1. 鈦含量對於鑽石體積分率 50% 的複合材料的影響...................................................................................76 4.3.1.1. 試片表面結構及微結構觀察........................76 4.3.1.2. XRD分析結果................................................77 4.3.1.3. TEM 分析結果...............................................78 4.3.1.4. 試片熱性質分析結果....................................81 4.3.1.5. 破斷面微結構的觀察.....................................82 4.3.2. 鈦含量對於鑽石體積分率 60% 的複合材料的影響...................................................................................90 4.3.2.1. 試片中最佳鈦含量添加的理論計算............90 4.3.2.2. 試片表面微結構觀察....................................91 4.3.2.3. XRD 分析結果...............................................91 4.3.2.4. 試片熱性質分析結果....................................92 4.3.3. 鑽石體積分率 50% 及 60% 的試片之性質比較....93 4.4. 鑽石顆粒雙粒徑添加對熱性質的影響....................................98 4.5. 燒結時間對複合材料性質的影響..........................................100 4.5.1. 界面微結構觀察.........................................................100 4.5.2. 熱性質的影響.............................................................101 4.5.3. 界面成長機制的探討及建立.....................................101 4.6. 不同形貌鑽石的影響..............................................................106 4.7. 熱傳導係數實驗值及理論值的比較......................................109 4.8. 熱膨脹係數實驗值及理論值的比較......................................114 4.9. 鑽石/銀基複合材料的比較.....................................................118 伍、結論.....................................................................................................123 陸、建議未來研究方向.............................................................................126 柒、參考文獻.............................................................................................127 圖目錄 圖 2-1 晶片熱通量及冷卻技術極限的示意圖..........................................5 圖 2-2 晶片上的溫度分佈及局部熱點示意圖..........................................5 圖 2-3 常用電子構裝材料的熱傳導係數對熱膨脹係數關係圖..............8 圖 2-4 攪拌鑄造法示意圖.....................................................................19 圖 2-5(a) 間接熱壓, (b) 直接熱壓示意圖............................................20 圖 2-6 氣壓浸透法示意圖.....................................................................21 圖 2-7 擠壓鑄造法示意圖.....................................................................21 圖 2-8 脈衝電漿燒結示意圖.................................................................22 圖 2-9 脈衝電漿燒結原理示意圖.........................................................22 圖 2-10 接觸角與表面張力關係圖.......................................................30 圖 2-11 液相金屬與鑽石之間的附著功...............................................31 圖 2-12 純錫與純鉛的表面張力隨溫度的變化...................................35 圖 2-13 在不同溫度下,鉛添加量對錫鉛合金表面張力的影響.........35 圖 2-14 在970 °C、真空度為10-4 Pa下,Ag-Zr合金在AlN基板上接觸角隨時間的變化..................................................................36 圖 2-15 在1000 °C、真空度為10-3 Pa下,銀合金在BN基板上接觸角與活性元素濃度的關係圖:(1) Ti (2) Zr (3) Hf..................36 圖 2-16 在1100 °C、真空度為3×10-4 Pa下,Cu-Ti合金在石墨基板上接觸角隨時間的變化..........................................................37 圖 2-17 在1100 °C、真空度為3×10-4 Pa下,Cu-Cr合金在石墨基板上接觸角隨時間的變化..........................................................37 圖 2-18 使用鍍鈦鑽石燒結之 Diamond /Al composites 表面元素分布: (a) 表面形貌, (b) C, (c) Al, (d) Ti, (e) Si, and (f) O........42 圖2-19 Ag-Si相圖...................................................................................45 圖2-20 Si-C相圖.....................................................................................45 圖 2-21 氣壓滲透法鑽石鋁基複材斷面觀察圖,可發現 Al 附著在鑽石(100) 面上...........................................................................51 圖 2-22 氣壓滲透法鑽石鋁基複材斷面經電化學蝕刻,Al4C3 選擇性附著在 (100) 面上.................................................................51 圖 2-23 鑽石 (100) 面上 Al4C3 板狀物突起......................................52 圖 2-24 二次擠壓鑄造後斷面觀察,Al4C3 無法與鑽石 (100) 面接合..............................................................................................52 圖 2-25 HR-SEM 顯示 Diamond/Cu-Cr 複材中界面反應物 Cr3C2.........................................................................................53 圖 2-26 Diamond/Cu-Cr 複材界面反應物之 TEM 與電子繞射圖...53 圖 2-27 粒徑比與體積分率比對堆積密度之影響...............................55 圖 3-1 C-Ti 相圖....................................................................................59 圖 3-2 NT-100H 粉末成型機.................................................................60 圖 3-3 水平爐管內試片放置示意圖.....................................................60 圖 3-4 Cu-Ti 相圖..................................................................................61 圖 3-5 TMA熱膨脹係數量測-試片放置示意圖...................................63 圖 3-6 LFA 447 熱擴散係數量測與試片放置示意圖..........................65 圖 4-1 實驗所用銅粉外觀........................................................................70 圖 4-2 實驗所用鈦粉外觀........................................................................70 圖 4-3 實驗所用鑽石粉末外觀:(a) 300 µm (TYPE YK-9E)、(b) 50 µm (TYPE PK-5) 、(c) 300 µm (TYPE YK-5E)...............................71 圖 4-4 未添加活性元素燒結後之鑽石/銅基複合材料...........................74 圖 4-5 添加各種活性元素燒結後的鑽石/銅基複合材料試片外觀:(a) 矽添加、(b) 鈷添加、(c) 鉻添加、(d) 鎢添加、(e) 鉬添加,及 (f) 鈦添加.............................................................................74 圖 4-6 添加不同活性元素之鑽石/銅基複合材料之表面微結構:(a) 鎢添加、(b) 鉬添加,及 (c) 鈦添加..............................................75 圖 4-7 鑽石體積分率 50%、鈦變量之複材試片外觀:(a) 0.2 at% 鈦添加、(b) 0.3 at% 鈦添加,及 (c) 0.6 at% 鈦添加.......................84 圖 4-8 鑽石體積分率 50%、鈦變量之複材表面微結構:(a) 0.3 at% 鈦添加、(b) 0.4 at% 鈦添加、(c) 0.6 at% 鈦添加,及 0.9 at% 鈦添加.............................................................................................84 圖 4-9 鑽石體積分率 50%、鈦變量之複材 X 光結晶繞射分析圖.....85 圖 4-10 鑽石體積分率 50%、鈦添加量 0.6 at% 之複合材料界面 TEM 分析結果.....................................................................................85 圖 4-11 鑽石體積分率 50%、鈦添加量 0.6 at% 之複合材料界面 TEM 分析結果:(a) TEM 影像、(b)(c) 溝槽狀結構與鑽石界面之原子影像圖.....................................................................................86 圖 4-12 鑽石體積分率 50%、鈦添加量 0.6 at%、燒結 30 分鐘的試片,其碳化鈦與銅界面間的原子影像圖.........................................87 圖 4-13 鑽石體積分率 50%、鈦添加量 0.9 at% 之複合材料界面 TEM 分析結果,其中 I 為鑽石區、II 為 銅、碳混合區、III 為碳化鈦區、IV 為銅基地區,及 V 為試片表面氧化鈦區 (其 EDS 成份分析如插入表所示)..................................................88 圖 4-14 鑽石體積分率 50% 的複合材料之熱傳導係數、熱膨脹係數及緻密度對鈦含量的變化趨勢圖.................................................88 圖 4-15 鑽石體積分率 50%、燒結時間 30 分鐘,鈦變量的試片破斷面微結構圖:(a) 0.3 at 鈦添加、(b) 0.4 at% 鈦添加、(c) 0.6 at% 鈦添加,及(d) 0.9 at% 鈦添加...................................89 圖 4-16 鑽石體積分率 60%、燒結時間 30 分鐘,鈦變量的試片,其表面微結構分析:(a) 0.62 at%、(b) 0.72 at%,及 (c) 0.92 at%...............................................................................................95 圖 4-17 鑽石體積分率 60%、燒結 30 分鐘,鈦變量的試片之 XRD 分析.................................................................................................96 圖 4-18 鑽石體積分率 60% 的複合材料之熱傳導係數、熱膨脹係數及緻密度對鈦含量的變化趨勢圖.................................................96 圖 4-19 鑽石/銅-鈦複合材料破斷面微結構:(a) 鑽石體積分率 50%、(b) 鑽石體積分率 60%.............................................................97 圖 4-20圖 4-20 鑽石體積60%、雙粒徑鑽石添加試片之表面微結構.................................................................................................99 圖 4-21 鑽石體積分率 50%、鈦含量 0.6 at% 之複合材料界面微結構對燒結時間的變化圖:(a) 5 分鐘、(b) 15 分鐘、(c) 30分鐘,及 (d) 180 分鐘.......................................................................104 圖 4-22 鑽石體積分率 50%、鈦含量 0.6 at% 之複合材料熱傳導係數及緻密度對燒結時間的變化.....................................................104 圖 4-23 界面碳化鈦隨燒結時間變化之成長機制示意圖:(a) < 5 分鐘、(b) ~ 5 分鐘、(c) ~ 15分鐘,及 (d) ~ 30 分鐘..........................105 圖 4-24 鑽石體積分率 50% 及 60%、燒結 30 分鐘的複合材,其鈦變量對熱性質的變化:(a) 50%、(b) 60%...................................108 圖 4-25 不同鑽石體積分率下、不同鈦添加量的複材熱膨脹係數與理論值的比較...................................................................................117 圖 4-26 不同鈦添加量之鑽石/銀基複合材料表面微結構圖,由左至右分別為鈦添加量 1 at%、3 at%,及 5 at%...............................121 圖 4-27 鑽石體積分率 50%、鈦添加量 3 at%、燒結時間 30 分鐘之複合材料 XRD 分析..............................................................121 圖 4-28 鑽石體積分率 50%、燒結 30 分鐘之鑽石/銀基複合材料,其緻密度及熱傳導係數對鈦含量的變化...................................122 表目錄 表 2-1 相關冷卻技術的比較...................................................................6 表 2-2 傳統上應用於熱管理和電子構裝的材料...................................9 表 2-3 高熱傳導係數、低膨脹係數複合材料之性質...........................13 表 2-4 不同研究單位所開發之高導熱複材.........................................14 表 2-5 常見純金屬對鑽石的接觸角關係.............................................30 表 3-1 鑽石、銅及鈦的基本性質...........................................................59 表 4-1 銅、碳化鈦及鑽石的縱波、橫波聲速及熱傳導係數..................112 表 4-2 不同參數之鑽石/銅-鈦複合材料,利用 DMM model 計算出的界面間熱阻及界面有效熱傳導理論值.....................................113 表 4-3 不同參數之鑽石/銅-鈦複合材料熱傳導性質理論值與實際值之比較.............................................................................................113

    柒、參考文獻
    1. R.C. Chu, “The Perpetual Challenges of Electronics Cooling Technology for Computer Product Applications – from Laptop to Supercomputer”, National Taiwan University Presentation, (2003) 1-63.
    2. 劉君愷, “3D IC散熱及可靠度設計技術 (Thermal and Reliability Issues for 3D IC)”, 工業材料雜誌, 274 (2009) 99-107.
    3. R. Mahajan, C.P. Chiu and G. Chrysler, “Cooling a Microprocessor Chip”, Proceedings of the IEEE, 94 (2006) 1476-1486.
    4. K. Banerjee, S.C. Lin and V. Wason, “Leakage and Variation aware Thermal Management of Nanometer Scale ICs”, Proceedings of IMAPS Advanced Technology Workshop on Thermal Management, (2004).
    http://nrl.ece.ucsb.edu/sites/default/files/sites/default/papers/IMAPS-ATW2004.pdf
    5. K. Azar and B. Tavassoli, “Chip Level Cooling: The Final Frontier”, Qpedia Thermal eMagazine, 3 (2009).
    http://www.digikey.com/Web%20Export/Supplier%20Content/ATS_684/PDF/ATS_Qpedia0109.pdf?redirected=1
    6. C. Zweben, “Advances in Composite Materials for Thermal Management in Electronic Packaging”, Journal of the Minerals, 50 (1998) 47-51.
    7. C. Zweben, “New, Low-CTE, Ultrahigh-Thermal-Conductivity Materials for Lidar Laser Diode Packaging”, Proceedings of the SPIE, 5887 (2005) 68-77.
    8. J. Barcena, J. Maudes, M. Vellvehi, X. Jorda, I. Obieta, C. Guraya, L. Bilbao, C. Jiménez, C. Merveille, and J. Coleto., “Innovative Packaging Solution for Power and Thermal Management of Wide-Band gap Semiconductor Devices in Space Applications”, Acta Astronautica, 62 (2008) 422-430.
    9. 黃振東, “高熱傳材料之發展與應用 (The Development and Applications of High Thermal Conductivity Materials)”, 工業材料雜誌, 259 (2008) 117-126.
    10. D. Rowcliffe, “Cemented Diamond Composites for Thermal Management Applications”, Proceedings of IMAPS, Denver, Colorado, USA, (2002).
    11. D.M. Jacobson and S.P.S. Sangha, “Novel Low Expansion Packages for Elecronics”, The GEC Journal of Technology, 14 (1997) 48-52.
    12. J.F. Silvain, Y.L. Petitcorps, E. Sellier, P. Bonniau and V. Heim, “Elastic Moduli, Thermal Expansion and Microstructure of Copper-Matrix Composite Reinforced by Continuous Graphite Fibres”, Composites, 25 (1994) 570-574.
    13. I. Dutta, “Role of Interfacial and Matrix Creep During Thermal Cycling of Continuous Fiber Reinforced Metal-Metal Composites”, Acta Materialia, 48 (2000) 1055-1074.
    14. M. Vedula R.N. Pangborn and R.A. Queeney, “Fiber Anisotropic Thermal-Expansion and Residual Thermal-Stress in a Graphite/ Aluminum Composite”, Composites, 25 (1988) 55-60.
    15. W.B. Johnson and B. Sonuparlak, “Diamond/Al metal matrix composites formed by the pressureless metal infiltration process”, Journal of Materials Research, 8 (1993) 1169-1173.
    16. K. Hanada, K. Matsuzaki and T. Sano, “Thermal properties of diamond particle-dispersed Cucomposites”, Journal of Materials Processing Technology, 153-154 (2004) 514-518.
    17. O. Beffort, F.A. Khalid, L. Weber, P. Ruch, U.E. Klotz, S. Meier and S. Kleiner, “Interface formation in infiltrated Al(Si)/diamond composites”, Diamond and Related Materials, 15 (2006) 1250-1260.
    18. R. Tavangar, J.M. Molina and L. Weber, “Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast”, Scripta Materialia, 56 (2007) 357-360.
    19. A.M. Abyzov, S.V. Kidalov and F.M. Shakhov, “High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application”, Applied Thermal Engineering, 48 (2012) 72-80.
    20. Q.P. Kang, X.B. He, S.B. Ren, L. Zhang, M. Wu, C.Y. Guo, W. Cui and X.H. Qu, “Preparation of copper-diamond composites with chromium carbide coatings on diamond particles for heat sink applications”, Applied Thermal Engineering, 60 (2013) 426-429.
    21. S. Amirkhanlou and B. Niroumand, “Synthesis and Characterization of 356-SiCp Composites by Stir Casting and Compocasting Methods”, Transactions of Nonferrous Metals Society of China, 20 (2010) 788-793.
    22. 汪建民、朱秋龍, “粉末冶金”, 中華民國粉末冶金協會, (1991) 124-129.
    23. www.rhp-technology.com
    24. I.N. Orbulov1, Á. Németh1 and J. Dobránszky, “Composite Production by Pressure Infiltration”, Materials Science Forum, 589 (2008) 137-142.
    25. D. Coupard, J. Goin and J.F. Sylvain, “Fabrication and Squeeze Casting Infiltration of Graphite/Alumina Performs”, Journal of Materials Science, 34 (1999) 5307-5313.
    26. G. Maizza, S. Grasso, Y. Sakka, T. Noda and O. Ohashi, “Relation Between Microstructure, Properties and Spark Plasma Sintering (SPS) Parameters of Pure Ultrafine WC Powder”, Science and Technology of Advanced Materials, 8 (2007) 644-654.
    27. H.U. Kessel, J. Hennicke, R. Kirchner and T. Kessel, “Rapid Sintering of Novel Materials by FAST/SPS – Further Development to the Point of an Industrial Production Process With High Cost Eefficiency”, FCT Systeme GmbH, Germany.
    http://www.fct-systeme.de/download/20100225123420/FCT-Sintered-Materials.pdf
    28. R.M. German, K.F. Hens and J.L. Johnson, “Power-Metallurgy processing of Thermal Management Materials for Microelectronic Applications”, International Journal of Powder Metallurgy, 30 (1994) 205-215.
    29. P.S. Turner, “Thermal-Expansion Stresses in Reinforced Plastics”, Journal of Research of the National Bureau of Standards, 37 (1946) 239-250.
    30. E.H. Kerner, “The Elastic and Thermo-Elastic Properties of Composite Media”, Proceeding of the Physical Society of London, 68 (1956) 808-813.
    31. T.T. Wang and T.K. Kwei, “Effect of Induced Thermal Stresses on Coefficients of Thermal Expansion and Densities of Filled Polymers”, Journal of Polymer Science Part A-2, 7 (1969) 889-896.
    32. R.R. Tummala and A.L. Friedberg, “Thermal Expansion of Composite Materials”, Journal of Applied Physics, 41 (1970) 5104-5107.
    33. R.A. Schapery, “Thermal Expansion Coefficients of Composite Materials Based on Energy Principles”, Journal of Composite Materials, 2 (1968) 380-404.
    34. R.M. German, “A Model for the Thermal-Properties of Liquid-Phase Sintered Composites”, Metallurgical Transactions A, 24A (1993) 1745-1752.
    35. D.P.H. Hasselman and K.Y. Donaldson, “Effect of Reinforcement Particle Size on the Thermal Conductivity of a Particulate-Silicon Carbide-Reinforced Aluminum Matrix Composite”, Journal of the American Ceramic Society, 75 (1992) 3137-3140.
    36. A.G. Every and Y. Tzou, D.P.H. Hasselman and R. Raj, “The Effect of Particle-Size on the Thermal Conductivity of ZnS/Diamond Composites”, Acta Metallurgica et Materialia, 40 (1992) 123-129.
    37. J.C. Maxwell, “A Treatise on Electricity and Magnetism”, Third ed., Oxford University Press, (1904).
    38. D.P.H. Hasselman and L.F. Johnson, “Effective Thermal-Conductivity of Composites with Interfacial Thermal Barrier Resistance”, Journal of Composite Materials, 21 (1987) 508-515.
    39. K. Chu, C.C. Jia, H. Guo and W.S. Li, “On the thermal conductivity of Cu-Zr/diamond composites”, Materials and Design, 45 (2013) 36-42.
    40. Y.V. Naidich and G.A. Kolesnichenko, “Investigation of the Wetting of Diamond and Graphite by Molten Metals and Alloys”, Soviet Powder Metallurgy and Metal Ceramics, 3 (1964) 191-195.
    41. K. Nogi, Y. Okada, K. Ogino and N. Iwamoto, “Wettability of Diamond by Liquid Pure Metals”, Journal of the Japan Institute Metals, 57 (1993) 63-67.
    42. X.P. Zhang, H.W. Wang and Y.W. Shi, “Influence of Minute Amount of Element Bi, Ag and In on Surface Tension and Soldering Process Performance of Tin-Lead Based Solders”, Journal of Materials Science, 15 (2004) 511-517.
    43. E. Benko, “Wettability Studies of Cubic Boron Nitride by Silver-Titanium”, Ceramics International, 21 (1995) 303-307.
    44. M.L. Muolo, E. Ferrera, R. Novakovic and A. Passerone, “Wettability of Zirconium Diboride Ceramics by Ag, Cu and Their Alloys with Zr”, Scripta Materialia, 48 (2003) 191-196.
    45. A. Koltsov, F. Hodaj, N. Eustathopoulos, A. Dezellus and P. Plaindoux, “Wetting and Interfacial Reactivity in Ag-Zr/Sintered AlN System”, Scripta Materialia, 48 (2003) 351-357.
    46. E. Benko, E. Bielanska, V.M. Pereverteilo and O.B. Loginova, “Formation Peculiarites of the Interfacial Structure During CBN Wetting with Ag-Ti, Ag-Zr and Ag-Hf Alloys”, Diamond and Related Materials, 6 (1997) 931-934.
    47. M.L. Muolo, E. Ferrera and A. Passerone, “Wetting and Spreading of Liquid Metals on ZrB2-Based Ceramics”, Journal of Materials Science, 40 (2005) 2295-2300.
    48. A. Passerone, M.L. Muolo and D. Passerone, “Wetting of Group IV Diborides by Liquid Metals”, Journal of Materials Science, 41 (2006) 5088-5098.
    49. L.L. Yang, P. Shen, Q.L. Lin, F. Qiu and Q.C. Jiang, “Wetting of Porous Graphite by Cu–Ti Alloys at 1373K”, Materials Chemistry and Physics, 124 (2010) 499-503.
    50. P. Xiao and B. Derby, “Wetting of Silicon Carbide by Chromium Containing Alloys”, Acta Materialia, 46 (1998) 3491-3499.
    51. K. Nakashima, H. Matsumoto and K. Mori, “Effect of Additional Elements Ni and Cr on Wetting Characteristics of Liquid Cu on Zirconia Ceramics”, Acta Materialia, 48 (2000) 4677-4681.
    52. J.X. Zhang, R.S. Chandel, H.P. Seow, “A Study of Chromium on Wettability of Liquid Copper on Alumina Ceramics”, International Journal of Modern Physics B, 16 (2002) 50-56.
    53. L.L. Yang, P. Shen, Q.L. Lin, F. Qiu and Q.C. Jiang, “Effect of Cr on the Wetting in Cu/Graphite System”, Applied Surface Science, 257 (2011) 6276-6281.
    54. Z.C. Tao, Q.G. Guo, X.Q. Gao and L. Liu, “The Wettability and Interface Thermal Resistance of Copper/Graphite System with an Addition of Chromium”, Materials Chemistry and Physics, 128 (2011) 228-232.
    55. H.K. Lee and J.Y. Lee, “A Study of the Wetting, Microstructure and Bond Strength in Brazing SiC by Cu-X (X =Ti, V, Nb, Cr) Alloys”, Journal of Materials Science, 31 (1996) 4133- 4140.
    56. L. Weber and R. Tavangar, “On the Influence of Active Element Content on the Thermal Conductivity and Thermal Expansion of Cu-X (X = Cr, B) Diamond Composites”, Scripta Materialia, 57 (2007) 988-991.
    57. H. Fujii, H. Nakae and K. Okada, “Interfacial ReactionWetting in the Boron Nitride/Molten Aluminum System”, Acta Metallurgical Materialia, 41 (1993) 2963-2971.
    58. S.Y. Oh, J.A. Corine and K.C. Russell, “Wetting of Ceramic Particulates with Liquid Aluminum Alloys: Part II. Study of Wettability”, Metallurgical Transactions A, 20A (1989) 533-541.
    59. P.R. Chidambaram, G.R. Edwards and D.L. Olson, “A Thermodynamic Criterion to Predict Wettability at Metal-Alumina Interfaces”, Metallurgical Transactions B, 23B (1992) 215-222.
    60. L. Espie, B. Drevet and N. Eustathopoulos, “Experimental Study of the Influence of Interfacial Energies and Reactivity on Wetting in Metal/Oxide Systems”, Metallurgical Transactions A, 25A (1994) 599-605.
    61. S. Kalogeropoulou, L. Baud and N. Eustathopoulos, “Relationship Between Wettability and Reactivity in Fe/SiC System”, Acta Metallurgical Materialia, 43 (1995) 907-912.
    62. C. Wan, P. Kritsalis, B. Drevet and N. Eustathopoulos, “Optimization of Wettability and Adhesion in Reactive Nickel-Based Alloys/Alumina Systems by a Thermodynamic Approach”, Materials Science and Engineering A, A207 (1996) 181-187.
    63. E.A. Ekimov, N.V. Suetin, A.F. Popovich, V.G. Ralchenko, E.L. Gromnitskaya and V.P. Modenov, “Effect of Microstructure and Grain Size on the Thermal Conductivity of High-Pressure-Sintered Diamond Composites”, Inorganic Materials, 44 (2008) 224-229.
    64. F.A. Khalid, O. Beffort, U.E. Klotz, B.A. Keller and P. Gasser, “Microstructure and Interfacial Characteristics of Aluminum-Diamond Composite Materials”, Diamond and Related Materials, 13 (2004) 393-400.
    65. P.W. Ruch, O. Beffort, S. Kleiner, L. Weber and P.J. Uggowitzer, “Selective Interfacial Bonding in Al(Si)-Diamond Composites and Its Effect on Thermal Conductivity”, Composites Science and Technology, 66 (2006) 2677-2685.
    66. S. Kleiner, F.A. Khalid, P.W. Ruch, S. Meier and O. Beffort, “Effect of Diamond Crystallographic Orientation on Dissolution and Carbide Formation in Contact with Liquid aluminum”, Scripta Materialia, 55 (2006) 291-294.
    67. B. Yang and J.K. Yu, “Microstructure and Thermal Expansion of Ti Coated Diamond/Al Composites”, Transactions of Nonferrous Metals Society of China, 19 (2009) 1167-1173.
    68. H. Feng, J. K. Yu and W. Tan, “Microstructure and Thermal Properties of Diamond/Aluminum Composites with TiC Coating on Diamond Particles”, Materials Chemistry and Physics, 124 (2010) 851-855.
    69. K. Mizuuchi, K. Inoue, Y. Agari, Y. Morisada, M. Sugioka, M. Tanaka, T. Takeuchi, J.I. Tani, M. Kawahara and Y. Makino, “Processing of Diamond Particle Dispersed Aluminum Matrix Composites in Continuous Solid–liquid Co-existent State by SPS and Their Thermal Properties”, Composites: Part B, 42 (2011) 825-831.
    70. X.B. Liang, C.C. Jia, K. Chu, H. Chen, J.H. Nie and W.J. Gao, “Thermal Conductivity and Microstructure of Al/Diamond Composites with Ti-coated Diamond Particles Consolidated by Spark Plasma Sintering”, Journal of Composite Materials, 46 (2012) 1127-1136.
    71. T.B. Massalski and H. Okamoto, “Binary Alloy Phase Diagrams”, Second ed., ASM International, 3 (1992).
    http://www.slideshare.net/donalsyahrial/asm-metals-handbook-volume-3-alloy-phase-diagrams
    72. L.Weber and R. Tavangar, “Diamond-based Metal Matrix Composites for Thermal Management Made by Liquid Metal Infiltration-Potential and Limits”, Advanced Materials Research, 59 (2009) 111-115.
    73. A.M. Abyzov, S.V. Kidalov and F.M. Shakhov, “High Thermal Conductivity Composites Consisting of Diamond Filler with Tungsten Coating and Copper (Silver) Matrix”, Journal of Materials Science, 46 (2011) 1424-1438.
    74. J.A. Kerns, N.J. Colella and D. Makowiecki, “Dymalloy: A Composite Substrate for High Power Density Electronic Components”, The ISHM International Journal of Microcircuits and Electronic Packaging, 19 (1996) 206-211.
    75. K. Yoshida and H. Morigami, “Thermal Properties of Diamond/Copper Composite Material”, Microelectronics Reliability, 44 (2004) 303-308.
    76. S.B. Ren, X.Y. Shen, C.Y. Guo, N. Liu, J.B. Zang, X.B. He and X.H. Qu, “Effect of Coating on the Microstructure and Thermal Conductivities of Diamond–Cu Composites Prepared by Powder Metallurgy”, Composites Science and Technology, 71 (2011) 1550-1555.
    77. Y. Zhang, H.L. Zhang, J.H. Wu and X.T. Wang, “Enhanced Thermal Conductivity in Copper Matrix Composites Reinforced with Titanium-coated Diamond Particles”, Scripta Materialia, 65 (2011) 1097-1100.
    78. K. Mizuuchi, K. Inoue, Y. Agari, S. Yamada, M. Tanaka, M. Sugioka, T. Takeuchi, J.I. Tani, M. Kawahara, J.H. Lee and Y. Makino, “Thermal Properties of Diamond particle dispersed Cu matrix composites Fabricated by Spark Plasma Sintering (SPS)”, Materials Science Forum, 638-642 (2010) 2115-2120.
    79. T. Schubert, L. Ciupinski, W. Zielinski, A. Michalski, T. Weisgarber and B. Kieback, “Interfacial Characterization of Cu/Diamond Composites Prepared by Powder Metallurgy for Heat Sink Applications”, Scripta Materialia, 58 (2008) 263-266.
    80. C.L. Martin and D. Bouvard, “Isostatic compaction of bimodal powder mixtures and composites”, International Journal of Mechanical Sciences, 46 (2004) 907-927.
    81. http://www.factdiamond.com
    82. http://www.artc.tw
    83. https://www.echochemical.com
    84. J.F. Shackelford and W. Alexander, “Materials Science and Engineering Handbook”, Third ed., CRC Press 1 LLC, (2001).
    http://www.google.com.tw/books?hl=zh-TW&lr=&id=gSOxul7qnZAC&oi=fnd&pg=PA1&dq=Materials+Science+and+Engineering+Handbook&ots=rSj-6gVixH&sig=C5DO7htr8iu2gn3bzJNlzBMkLeE&redir_esc=y#v=onepage&q=Materials%20Science%20and%20Engineering%20Handbook&f=false
    85. NETZSCH, Operating Instructions LFA 447 Nanoflash.
    http://www.netzsch-thermal-analysis.com/uploads/tx_nxnetzschmedia/files/LFA_447_E_0912.pdf
    86. 蔡旻諺, “鈦對真空燒結鑽石銅基複合材料製程及熱性質之影響” ,100 國立清華大學碩士論文,pp. 91-169。
    87. R.W. Cahn, Wettability at High Temperatures, Pergamon Materials Series, 3 (1999).
    http://www.google.com.tw/books?hl=zh-TW&lr=&id=T7l7IWhVcGQC&oi=fnd&pg=PP2&dq=Wettability+at+High+Temperatures&ots=6MDw59PRB0&sig=chyeMazQEuxhITMHcKpz2Il3Lmo&redir_esc=y#v=onepage&q=Wettability%20at%20High%20Temperatures&f=false
    88. Y.H. Liang, Z.W. Han, X.J. Li, Z.H. Zhang and L.Q. Ren, “Study on the reaction mechanism of self-propagating high-temperature synthesis of TiC in the Cu-Ti-C system”, Materials Chemistry and Physics, 137 (2013) 200-206.
    89. E.T. Swartz and R.O. Pohl, “Thermal boundary resistance”, Reviews of Modern Physics, 61 (1989) 605-668.
    90. M.T. Lee, C.Y. Chung, C.M. Lin and S.J. Lin, Effects of Ti addition on thermal properties of diamond/Ag-Ti composites fabricated by liquid sintering, Materials Letters, 116 (2014) 212-214.
    91. C.L. Yaws, “Handbook of Vapor Pressure-Inorganic Compounds and Elements”, Gulf Professional Publishing, 4 (1995) p1, p94.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE