研究生: |
李 強 Imtiyaz Hussain |
---|---|
論文名稱: |
針對不同應用的微流體最佳化 Optimization of Microfluidic Channels for Different Applications |
指導教授: |
陳致真
Chen, Chih-chen |
口試委員: |
北森武彦
森川響二朗 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 68 |
中文關鍵詞: | 最佳化 、基因演算法 、迭代計算優化 、雙重退火 、差分進化 、Pyqt5 和 PySide Designer 、相關性 、3D 數值實現 |
外文關鍵詞: | Optimization, Genetic Algorithms, Iterative Optimization, Dual Annealing, Differential Evolution, Pyqt5 and PySide Designer, Correlations, 3D Numerical Implementation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
出於模擬計算時長及電腦儲存容量上的限制,涉及流體流動及其它參數的微流道最佳化繁瑣且不實際。與3D數值模擬相比,使用經驗式或近似解能縮短模擬計算時長。並且,經驗式可以預先將相關的設計及處理參數考慮進去,因此本研究大量使用之,結合最佳化技術來找到最適當的設計及處理參數變的可行。若給定的參數較少,還可以設定許多可調的參數。這項研究開發了一種包含微流體五種不同應用的軟體。此研究強調了五種應用的最佳化:單一流體、物質的混合和稀釋、蛇形通道中的快速混合、混合與反應 I(一混合就會反應)以及混合與反應 II(混合完成後才開始反應)。最佳化是基於晶片限制(晶片面積)和一些給定的參數,如流速、混合效率等等。這些參數由統御方程式控制,如流體流動的 Navier-Stokes 方程式、彎曲通道的 Dean 流動、混合和稀釋的擴散方程式以及欲達到的產率。本研究使用不同的最佳化演算法,如迭代計算優化、基因演算法、雙重退火和差分進化。最佳化後的或給定的微流道長度會自動擬合在一個或多個入口和出口之間,並使用海龜繪圖系統繪製最佳化後的晶片。模擬結果藉由 Comsol 和文獻中的其他解析方程式完成驗證。用戶界面內置於 Pyqt5 和 PySide 設計器中。該模型的主要優點是與其他模擬軟體相比,內置應用程式的計算時間非常短( < 15 分鐘)。
Due to computational time and computer memory limits, optimizing microfluidic channels involving fluidic flow and other processes becomes cumbersome and infeasible. The computational time is reduced by considering correlations (analytical equations) or numerical approximations compared to the 3D numerical implementation. Also, process parameters prior to design parameters can be considered if correlations are used. Since the correlations are used, optimization techniques can be incorporated to find the optimal value of process or design parameters and many optimal parameters if fewer parameters are given. This study has developed the software, which contains five different applications used in microfluidics. The proposed research highlights the optimization of five applications: microfluidic channels containing single fluid, mixing and dilution, rapid mixing in serpentine channels, mixing and reaction I (reaction occurs as soon as the mixing occurs), and mixing and reaction II (reaction starts after complete mixing). The optimization is based on chip constraints (area of the chip) and some input dimensions such as flow rate, the efficiency of mixing, etc., which are governed by fundamental equations such as Navier-Stokes equation for fluid flow, dean flow for curved channels, diffusion equation for mixing and dilution and also the rate of removal if a reaction occurs. This study uses different optimization algorithms such as iterative optimization, genetic algorithms, dual annealing, and differential evolution. The optimized or given length is automatically fitted between the inlets and the outlets, and turtle graphics draw the optimized chip. The validation of results is done in Comsol and other analytical equations found in the literature. The user interface is built in Pyqt5 and PySide designer. The primary advantage of this model is that the computational time is very short (<15 min) for built-in applications as compared to other simulation software (usually greater than 15 min).
1. Bruus, H., Theoretical Microfluidics. Department of Micro and Nanotechnology Technical University of Denmark. 2008, Oxford, New York.
2. Figeys, D. and D. Pinto, Lab-on-a-chip: a revolution in biological and medical sciences. 2000, ACS Publications.
3. Curtis, A. and C. Wilkinson, Nantotechniques and approaches in biotechnology. Trends in Biotechnology, 2001. 19(3): p. 97-101.
4. Clayton, J., Go with the microflow. Nature Methods, 2005. 2(8): p. 621-627.
5. Becker, H. and L.E. Locascio, Polymer microfluidic devices. Talanta, 2002. 56(2): p. 267-287.
6. Duffy, D.C., et al., Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Analytical chemistry, 1998. 70(23): p. 4974-4984.
7. Andersson, H. and A. Van den Berg, Microfluidic devices for cellomics: a review. Sensors and actuators B: Chemical, 2003. 92(3): p. 315-325.
8. Laser, D.J. and J.G. Santiago, A review of micropumps. Journal of micromechanics and microengineering, 2004. 14(6): p. R35.
9. Oh, K.W. and C.H. Ahn, A review of microvalves. Journal of micromechanics and microengineering, 2006. 16(5): p. R13.
10. Cai, G., et al., A review on micromixers. Micromachines, 2017. 8(9): p. 274.
11. Feng, X., et al., Tri-fluid mixing in a microchannel for nanoparticle synthesis. Lab on a Chip, 2019. 19(17): p. 2936-2946.
12. Borrvall, T. and J. Petersson, Topology optimization of fluids in Stokes flow. International journal for numerical methods in fluids, 2003. 41(1): p. 77-107.
13. Gersborg-Hansen, A., O. Sigmund, and R.B. Haber, Topology optimization of channel flow problems. Structural and multidisciplinary optimization, 2005. 30(3): p. 181-192.
14. Olesen, L.H., F. Okkels, and H. Bruus, A high‐level programming‐language implementation of topology optimization applied to steady‐state Navier–Stokes flow. International Journal for Numerical Methods in Engineering, 2006. 65(7): p. 975-1001.
15. Zhou, T., et al., Design of microfluidic channel networks with specified output flow rates using the CFD-based optimization method. Microfluidics and Nanofluidics, 2017. 21(1): p. 11.
16. Deng, Y., et al., Topology optimization of unsteady incompressible Navier–Stokes flows. Journal of Computational Physics, 2011. 230(17): p. 6688-6708.
17. Alexandersen, J., et al., Topology optimization for natural convection problems. International Journal for Numerical Methods in Fluids, 2014. 76(10): p. 699-721.
18. Deng, Y., et al. Dynamic optimization of valveless micropump. in 2011 16th International Solid-State Sensors, Actuators, and Microsystems Conference. 2011. IEEE.
19. Deng, Y., et al. Optimization of no-moving part fluidic resistance microvalves with low Reynolds number. in 2010 IEEE 23rd International conference on micro electro mechanical systems (MEMS). 2010. IEEE.
20. Lin, S., et al., Topology optimization of fixed-geometry fluid diodes. Journal of Mechanical Design, 2015. 137(8): p. 081402.
21. Guo, Y., et al., Topology optimization of passive micromixers based on Lagrangian mapping method. Micromachines, 2018. 9(3): p. 137.
22. Zeng, S., B. Kanargi, and P.S. Lee, Experimental and numerical investigation of a mini channel forced air heat sink designed by topology optimization. International Journal of Heat and Mass Transfer, 2018. 121: p. 663-679.
23. Haertel, J.H., et al., Topology optimization of a pseudo 3D thermofluid heat sink model. International Journal of Heat and Mass Transfer, 2018. 121: p. 1073-1088.
24. Kobayashi, H., et al., Freeform winglet design of fin-and-tube heat exchangers guided by topology optimization. Applied Thermal Engineering, 2019. 161: p. 114020.
25. Yan, S., et al., Topology optimization of microchannel heat sinks using a two-layer model. International Journal of Heat and Mass Transfer, 2019. 143: p. 118462.
26. Sanka, R., et al., 3d μ f-interactive design environment for continuous flow microfluidic devices. Scientific reports, 2019. 9(1): p. 1-10.
27. Lashkaripour, A., Rodriguez, C., Mehdipour, N. et al. Machine learning enables design automation of microfluidic flow-focusing droplet generation. Nat Commun 12, 25 (2021).
28. Jeevan Maddala, Raghunathan Rengaswamy, A Genetic Algorithm (GA) based rational approach for design of discrete microfluidic networks, Computer Aided Chemical Engineering, Elsevier, Volume 30, 2012.
29. Sato, K., Hibara, A., Tokeshi, M., Hisamoto, H., & Kitamori, T. (2003). Microchip-based chemical and biochemical analysis systems. Advanced drug delivery reviews, 55(3), 379-391.
30. Bellman, R., et al., Mathematical optimization source: en. wikipedia. org/wiki/Mathematical_optimization.
31. Martins, J.R. and A. Ning, Engineering design optimization. 2021: Cambridge University Press.
32. Salman, A.M., A. Alridha, and A.H. Hussain. Some Topics on Convex Optimization. in Journal of Physics: Conference Series. 2021. IOP Publishing.
33. Iterative method. Available from: https://en.wikipedia.org/wiki/Iterative_method.
34. Mitchell, W.J., City of bits: space, place, and the infobahn. 1996: MIT press.
35. Gerges, F., G. Zouein, and D. Azar. Genetic algorithms with local optima handling to solve sudoku puzzles. in Proceedings of the 2018 International Conference on Computing and Artificial Intelligence. 2018.
36. Introduction to Genetic Algorithms — Including Example Code, retrieved from https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3.
37. Genetic Algorithms - Parent Selection, retrieved from https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_parent_selection.htm
38. Whitley, D., A genetic algorithm tutorial. Statistics and computing, 1994. 4(2): p. 65-85.
39. Eiben, A.E., P.-E. Raue, and Z. Ruttkay. Genetic algorithms with multi-parent recombination. in International conference on parallel problem solving from nature. 1994. Springer.
40. Ting, C.-K. On the mean convergence time of multi-parent genetic algorithms without selection. in European Conference on Artificial Life. 2005. Springer.
41. Oliva, D., Abd Elaziz, M., & Hinojosa, S. (2019). Metaheuristic algorithms for image segmentation: theory and applications (Vol. 825). Springer.
42. Optimization Techniques — simulated annealing, retrieved from https://towardsdatascience.com/optimization-techniques-simulated-annealing-d6a4785a1de7
43. Storn, R. and K. Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 1997. 11(4): p. 341-359.
44. Differential_evolution. Available from: http://en.wikipedia.org/wiki/Differential_evolution.
45. Wormington, M., et al., Characterization of structures from X-ray scattering data using genetic algorithms. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1999. 357(1761): p. 2827-2848.
46. Lampinen, J. A constraint handling approach for the differential evolution algorithm. in Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600). 2002. IEEE.
47. Continuum Fluid Mechanics and the Navier-Stokes Equations, in Understanding Aerodynamics. p. 13-77.
48. Stokes_equations. Available from: https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations.
49. Hessel, V., H. Löwe, and F. Schönfeld, Micromixers—a review on passive and active mixing principles. Chemical engineering science, 2005. 60(8-9): p. 2479-2501.
50. Nguyen, N.-T., Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluidics and nanofluidics, 2012. 12(1-4): p. 1-16.
51. Howell, P.B., et al., A combinatorial approach to microfluidic mixing. Journal of Micromechanics and Microengineering, 2008. 18(11): p. 115019.
52. Wu, Z., N.-T. Nguyen, and X. Huang, Nonlinear diffusive mixing in microchannels: theory and experiments. Journal of Micromechanics and Microengineering, 2004. 14(4): p. 604.
53. Stroock, A.D., et al., Chaotic mixer for microchannels. Science, 2002. 295(5555): p. 647-651.
54. Schönfeld, F., V. Hessel, and C. Hofmann, An optimised split-and-recombine micro-mixer with uniform ‘chaotic’mixing. Lab on a Chip, 2004. 4(1): p. 65-69.
55. Ito, Y. and S. Komori, A vibration technique for promoting liquid mixing and reaction in a microchannel. AIChE journal, 2006. 52(9): p. 3011-3017.
56. Oddy, M.H., J.G. Santiago, and J.C. Mikkelsen, Electrokinetic instability micromixing. Analytical chemistry, 2001. 73(24): p. 5822-5832.
57. Yang, Z., et al., Ultrasonic micromixer for microfluidic systems. Sensors and Actuators A: Physical, 2001. 93(3): p. 266-272.
58. Oberti, S., A. Neild, and T.W. Ng, Microfluidic mixing under low frequency vibration. Lab on a Chip, 2009. 9(10): p. 1435-1438.
59. Hashmi, A. and J. Xu, On the quantification of mixing in microfluidics. Journal of laboratory automation, 2014. 19(5): p. 488-491.
60. Del Amo, Eva María & Rimpelä, Anna-Kaisa & Heikkinen, Emma & Kari, Otto & Ramsay, Eva & Lajunen, Tatu & Schmitt, Mechthild & Hellinen, Laura & Bhattacharya, Madhushree & Richardson, Dominique & Subrizi, Astrid & Turunen, Tiina & Reinisalo, Mika & Itkonen, Jaakko & Toropainen, Elisa & Casteleijn, Marco & Kidron, Heidi & Antopolsky, Maxim & Vellonen, Kati-Sisko & Urtti, Arto. (2017). Pharmacokinetic aspects of retinal drug delivery. Progress in retinal and eye research. 57. 134-185. 10.1016/j.preteyeres.2016.12.001.
61. Bayat, P. and P. Rezai, Microfluidic curved-channel centrifuge for solution exchange of target microparticles and their simultaneous separation from bacteria. Soft matter, 2018. 14(26): p. 5356-5363.
62. Kuntaegowdanahalli, S.S., et al., Inertial microfluidics for continuous particle separation in spiral microchannels. Lab on a Chip, 2009. 9(20): p. 2973-2980.
63. Garg, P., Picardo, J. R., & Pushpavanam, S. (2015). Chaotic mixing in a planar, curved channel using periodic slip. Physics of Fluids, 27(3), 032004.
64. Berger, S., L. Talbot, and L. Yao, Flow in curved pipes. Annual review of fluid mechanics, 1983. 15(1): p. 461-512.
65. Ookawara, S., et al., Feasibility study on concentration of slurry and classification of contained particles by microchannel. Chemical Engineering Journal, 2004. 101(1-3): p. 171-178.
66. Delamarche, E., D. Juncker, and H. Schmid, Microfluidics for processing surfaces and miniaturizing biological assays. Advanced Materials, 2005. 17(24): p. 2911-2933.
67. Verpoorte, E., Microfluidic chips for clinical and forensic analysis. Electrophoresis, 2002. 23(5): p. 677-712.
68. McClain, M.A., et al., Microfluidic devices for the high-throughput chemical analysis of cells. Analytical chemistry, 2003. 75(21): p. 5646-5655.
69. Garnier, N., R.O. Grigoriev, and M.F. Schatz, Optical manipulation of microscale fluid flow. Physical review letters, 2003. 91(5): p. 054501.
70. Terry, S.C., J.H. Jerman, and J.B. Angell, A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE transactions on electron devices, 1979. 26(12): p. 1880-1886.
71. Shoji, S., S. Nakagawa, and M. Esashi, Micropump and sample-injector for integrated chemical analyzing systems. Sensors and Actuators A: Physical, 1990. 21(1-3): p. 189-192.
72. Esashi, M., Integrated micro flow control systems. Sensors and Actuators A: Physical, 1990. 21(1-3): p. 161-167.
73. Elwenspoek, M., et al., Towards integrated microliquid handling systems. Journal of Micromechanics and Microengineering, 1994. 4(4): p. 227.
74. Cefai, J., et al., Integrated chemical analysis microsystems in space life sciences research. Journal of Micromechanics and Microengineering, 1994. 4(4): p. 172.
75. Mori, Y., A. Jilkine, and L. Edelstein-Keshet, Wave-pinning and cell polarity from a bistable reaction-diffusion system. Biophysical Journal, 2008. 94(9): p. 3684-3697.
76. Rutgers, I.R., Relative viscosity and concentration. Rheologica Acta, 1962. 2(4): p. 305-348.
77. Conway, B. E. (1955). Effects of salts on the viscosity of polyelectrolyte solutions. Journal of Polymer Science, 18(88), 257-274.
78. Casson, N. (1959). Rheology of disperse systems. Flow Equation for Pigment Oil Suspensions of the Printing Ink Type. Rheology of Disperse Systems, 84-102.
79. Booth, F. (1950). The cataphoresis of spherical, solid non-conducting particles in a symmetrical electrolyte. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 203(1075), 514-533.
80. Earnshaw, A. W., & Sproson, J. C. (1960). Rheological Properties of Barytes Suspensions. Nature, 186(4722), 378-379.