研究生: |
歐薩伊 Osaid, Mohammad |
---|---|
論文名稱: |
用於快速抗菌藥敏性試驗基於並行納米陣列的微流控設備 Parallel Nanoliter Arrays Based Microfluidic Device for Quick Antimicrobial Susceptibility Testing |
指導教授: |
李國賓
Lee, Gwo-Bin |
口試委員: |
張晃猷
Chang, Hwan-You 李炫昇 Lee, Shiuann-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 66 |
中文關鍵詞: | 微陣列 、微流體 、抗菌藥敏試驗 、最低抑菌濃度 |
外文關鍵詞: | Microarrays, Microfluidics, Antimicrobial susceptibility testing, Minimum inhibitory concentration |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於市場上可用的抗生素數量有限,耐藥菌的出現確實是一個巨大的挑戰。快速診斷細菌感染和細菌對抗生素的抗藥性測試(AST)有助於遏制細菌感染。用於執行AST的常規方法取決於細菌的生長,這是一個相對較長的過程,可能需要幾天的時間。近年來,微流體技術在快速診斷領域中很有前途,因為它可以顯著減少通過小體積進行AST所需的時間,因為所需的細菌數量較少,從而減少了從血液中提取細菌的時間。因此,這項研究提出了一種基於納升陣列的多重微流控平台,可在單個芯片上同時使用多種濃度或類型的抗生素進行AST。這裡開發的微流控系統由兩個微流控芯片組成,一個用於執行AST,由納升體積的微陣列組成,另一個用於稀釋抗生素,處理微升液體。將兩個芯片適當地集成以彼此轉移流體。用於執行AST的芯片由7條生產線組成,每條生產線都具有多個體積等於1納升的微陣列。該設備僅需一個加載過程即可生成所有微陣列,以使用由稀釋芯片製備的七種不同濃度的抗生素對AST進行檢測,從而使該設備實現了並行化和高效。該設備的獨特之處在於它可以執行納升量的AST。同時,它與用於稀釋抗生素的設備集成在一起,該設備可以處理微升體積的液體,以在6小時內確定MIC值。在這項工作中,使用七個不同濃度的氨芐西林和細菌(大腸桿菌ATCC 25922)在微流體平台上進行了AST驗證。由於所有抗生素均在同一設備上測試過,因此它們要經受完全相同的條件,因此適合比較。此外,採用合適的加載過程,以確保細菌在所有微陣列中同時填充和均勻分佈,以進行AST。該設備可以同時在芯片上測試7種抗生素的這種能力可以確定最小抑菌濃度(MIC)值,這將有助於臨床醫生進行早期診斷和治療。
Emergence of antibiotic-resistant bacteria is indeed a great challenge because of limited number of antibiotics available in the market. Quick diagnosis of bacterial infection and antimicrobial susceptibility testing (AST) of bacteria to antibiotics can be useful for curbing it. The conventional method employed for performing AST relies on bacterial growth, which is a relatively lengthy process, and may take a couple of days. In recent years, microfluidic technology has been promising in the field of fast diagnosis as it substantially decreases the time required by performing AST in small volume as less number of bacteria are required, which reduces the time required in bacterial culture derived from blood. This study therefore presents a nanoliter array-based multiplexed microfluidic platform to perform AST using multiple concentrations or types of antibiotics simultaneously on a single chip. The microfluidic system developed here was consisted of two microfluidic chips, one for performing AST, which was consisted of microarrays of nanoliter volume, and another chip for antibiotic dilution, which handled the fluid of microliter. The two chips were suitably integrated to transfer the fluid from one another. The chip for performing AST consisted of seven lines, each having multiple microarrays of volume equal one nanoliter. The device involved a single loading process to generate all the microarrays to perform AST with seven different concentrations of antibiotics, prepared by the dilution chip, which makes the device parallelized and efficient. The unique feature of the device is that it can perform AST in nanoliter volume. At the same time, it is integrated with a device for performing dilution of antibiotics, which could handle fluids in a micro-liter volume, to determine the MIC value in 6 hours. In this work, AST was performed using seven different concentrations of ampicillin with bacteria (E. coli ATCC 25922) was demonstrated on the microfluidic platform. Since all the antibiotics were tested on the same device, they were subjected to exactly the same conditions which makes them suitable for comparison. Furthermore, a suitable loading process was employed which ensured simultaneous filling and equal distribution of bacteria in all microarrays to perform the AST. This capability of device to test seven antibiotics simultaneously on the chip allows the determination of minimum inhibitory concentration (MIC) value, which will help clinicians for early diagnostics and treatment.
1. Tanaka, M., An industrial and applied review of new MEMS devices features. Microelectronic Engineering, 2007. 84(5-8): pp. 1341-1344.
2. Ashraf, M.W., S. Tayyaba, and N. Afzulpurkar, Micro Electromechanical Systems (MEMS) Based Microfluidic Devices for Biomedical Applications. International Journal of Molecular Sciences, 2011. 12(6): pp. 3648-3704.
3. Abgrall, P. and A.M. Gue, Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem - a review. Journal of Micromechanics and Microengineering, 2007. 17(5): pp. R15-R49.
4. Yelin, I. and R. Kishony, Antibiotic Resistance. Cell, 2018. 172(5): p. 1136-1136.e1.
5. Holmes, A.H., Moore, L.S.P., Sundsfjord, A., Steinbakk, M., Karkey, A., Guerin, P.J., Piddock, L.J.V., Understanding the mechanisms and drivers of antimicrobial resistance. Lancet, 2016. 387(10014): pp. 176-87.
6. Payne, D.J., Microbiology - Desperately seeking new antibiotics. Science, 2008. 321(5896): pp. 1644-1645.
7. Kang, C.I., Kim, S. H., Park, W. B., Lee, K. D., Kim, H. B., Kim, E. C., Oh, M. D., Choe, K. W., Bloodstream infections caused by antibiotic-resistant gram-negative bacilli: Risk factors for mortality and impact of inappropriate initial antimicrobial therapy on outcome. Antimicrobial Agents and Chemotherapy, 2005. 49(2): pp. 760-766.
8. Luna, C.M., Aruj, P., Niederman, M. S., Garzon, J., Violi, D., Prignoni, A., Rios, F., Baquero, S., Gando, S., Ganar Grp, Appropriateness and delay to initiate therapy in ventilator-associated pneumonia. European Respiratory Journal, 2006. 27(1): pp. 158-164.
9. Li, Y.Y., X. Yang, and W.A. Zhao, Emerging Microtechnologies and Automated Systems for Rapid Bacterial Identification and Antibiotic Susceptibility Testing. Slas Technology, 2017. 22(6): pp. 585-608.
10. Landers, T.F., Cohen, B., Wittum, T. E., Larson, E. L., A review of antibiotic use in food animals: perspective, policy, and potential. Public Health Rep, 2012. 127(1): pp. 4-22.
11. Antle, J.M., Antibiotic use in animal agriculture and the economics of resistance: Discussion. American Journal of Agricultural Economics, 2002. 84(5): pp. 1301-1302.
12. Willing, B.P., S.L. Russell, and B.B. Finlay, Shifting the balance: antibiotic effects on host-microbiota mutualism. Nature Reviews Microbiology, 2011. 9(4): pp. 233-243.
13. MacDougall, C. and R.E. Polk, Antimicrobial stewardship programs in health care systems. Clin Microbiol Rev, 2005. 18(4): pp. 638-656.
14. Dellit, T.H., Owens, R. C., McGowan, J. E., Jr., Gerding, D. N., Weinstein, R. A., Burke, J. P., Huskins, W. C., Paterson, D. L., Fishman, N. O., Carpenter, C. F., Brennan, P. J., Billeter, M., Hooton, T. M., Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis, 2007. 44(2): pp. 159-77.
15. Burnham, C.D., Leeds, J., Nordmann, P., O'Grady, J., Patel, J., Diagnosing antimicrobial resistance. Nat Rev Microbiol, 2017. 15(11): pp. 697-703.
16. Balouiri, M., M. Sadiki, and S.K. Ibnsouda, Methods for in vitro evaluating antimicrobial activity: A review Journal of Pharmaceutical Analysis, 2016. 6: pp. 71-79.
17. Doern, G.V., Clinical impact of rapid in-vitro susceptibility testing and bacterial identification - reply Journal of Clinical Microbiology, 1995. 33(2): pp. 508-508.
18. Endimiani, A. and M.R. Jacobs, The Changing Role of the Clinical Microbiology Laboratory in Defining Resistance in Gram-negatives. Infectious Disease Clinics of North America, 2016. 30(2): pp. 323-345.
19. Kelley, S.O., New Technologies for Rapid Bacterial Identification and Antibiotic Resistance Profiling. Slas Technology, 2017. 22(2): pp. 113-121.
20. Buchan, B.W. and N.A. Ledeboer, Emerging Technologies for the Clinical Microbiology Laboratory. Clinical Microbiology Reviews, 2014. 27(4): pp. 783-822.
21. van Belkum, A. and W.M. Dunne, Next-Generation Antimicrobial Susceptibility Testing. Journal of Clinical Microbiology, 2013. 51(7): pp. 2018-2024.
22. Pulido, M.R., Garcia-Quintanilla, M., Martin-Pena, R., Cisneros, J. M., McConnell, M. J., Progress on the development of rapid methods for antimicrobial susceptibility testing. Journal of Antimicrobial Chemotherapy, 2013. 68(12): pp. 2710-2717.
23. Frickmann, H., W.O. Masanta, and A.E. Zautner, Emerging Rapid Resistance Testing Methods for Clinical Microbiology Laboratories and Their Potential Impact on Patient Management. Biomed Research International, 2014.p.37568124. Eckert, D.J., Sampath, R., Li, H. J., Massire, C., Matthews, H. E., Toleno, D., Hall, T. A., Blyn, L. B., Eshoo, M. W., Ranken, R., Hofstadler, S. A., Tang, Y. W., New technology for rapid molecular diagnosis of bloodstream infections. Expert Review of Molecular Diagnostics, 2010. 10(4): pp. 399-415.
25. Andrews, J.M., Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy, 2001. 48: pp. 5-16.
26. Lim, S.H., Mix, S., Xu, Z. Y., Taba, B., Budvytiene, I., Berliner, A. N., Queralto, N., Churi, Y. S., Huang, R. S., Eiden, M., Martino, R. A., Rhodes, P., Banaei, N., Colorimetric Sensor Array Allows Fast Detection and Simultaneous Identification of Sepsis-Causing Bacteria in Spiked Blood Culture. Journal of Clinical Microbiology, 2014. 52(2): pp. 592-598.
27. Ho, J.Y., Cira, N. J., Crooks, J. A., Baeza, J., Weibel, D. B., Rapid Identification of ESKAPE Bacterial Strains Using an Autonomous Microfluidic Device. Plos One, 2012. 7(7).
28. Yang, L.L., Zhou, Y. X., Zhu, S. B., Huang, T. X., Wu, L. N., Yan, X. M., Detection and Quantification of Bacterial Autofluorescence at the Single-Cell Level by a Laboratory-Built High-Sensitivity Flow Cytometer. Analytical Chemistry, 2012. 84(3): pp. 1526-1532.
29. Pulido, M.R., García-Quintanilla, M., Martín-Peña, R., Cisneros, J. M., McConnell, M. J., Progress on the development of rapid methods for antimicrobial susceptibility testing. J Antimicrob Chemother, 2013. 68(12): pp. 2710-7.
30. Bush, K. and G.A. Jacoby, Updated functional classification of beta-lactamases. Antimicrob Agents Chemother, 2010. 54(3): pp. 969-76.
31. Rodríguez-Baño, J. and M.D. Navarro, Extended-spectrum beta-lactamases in ambulatory care: a clinical perspective. Clin Microbiol Infect, 2008. 14 Suppl 1: pp. 104-110.
32. Bradford, P.A., Extended-spectrum beta-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clinical Microbiology Reviews, 2001. 14(4): pp. 933-951.
33. Jorgensen, J.H. and M.J. Ferraro, Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Clinical Infectious Diseases, 2009. 49(11): pp. 1749-1755.
34. Boedicker, J.Q., Li, L., Kline, T. R., Ismagilov, R. F. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab on a Chip, 2008. 8(8): pp. 1265-1272.
35. Besant, J.D., E.H. Sargent, and S.O. Kelley, Rapid electrochemical phenotypic profiling of antibiotic-resistant bacteria. Lab on a Chip, 2015. 15(13): pp. 2799-2807.
36. Takagi, R., Fukuda, J., Nagata, K., Yawata, Y., Nomura, N., Suzuki, H. A microfluidic microbial culture device for rapid determination of the minimum inhibitory concentration of antibiotics. Analyst, 2013. 138(4): pp. 1000-1003.
37. Jiang, L. and L. Boitard, Digital antimicrobial susceptibility testing using the MilliDrop technology. 2016. 35(3): pp. 415-22.
38. Jiang, C.-Y., Boitard, L., High-Throughput Single-Cell Cultivation on Microfluidic Streak Plates. Applied and Environmental Microbiology, 2016. 82(7): pp. 2210.
39. Eun, Y.J., Utada, A. S., Copeland, M. F., Takeuchi, S.,Weibel, D. B. Encapsulating Bacteria in Agarose Microparticles Using Microfluidics for High-Throughput Cell Analysis and Isolation. Acs Chemical Biology, 2011. 6(3): pp. 260-266.
40. Reis, N.M., Pivetal, J., Loo-Zazueta, A. L., Barros, J. M. S., Edwards, A. D, Lab on a stick: multi-analyte cellular assays in a microfluidic dipstick. Lab on a Chip, 2016. 16(15): pp. 2891-2899.
41. Chen, C.H., Lu, Yi, Sin, Mandy L. Y., Mach, Kathleen E., Zhang, Donna D., Gau, Vincent., Liao, Joseph C., Wong, Pak Kin., Antimicrobial Susceptibility Testing Using High Surface-to-Volume Ratio Microchannels. Analytical Chemistry, 2010. 82(3): pp. 1012-1019.
42. Churski, K., Kaminski, Tomasz S., Jakiela, Slawomir., Kamysz, Wojciech., Baranska-Rybak, Wioletta., Weibel, Douglas B., Garstecki, Piotr., Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab on a chip, 2012. 12(9): pp. 1629-1637.
43. Frickmann, H. and W.O. Masanta, Emerging rapid resistance testing methods for clinical microbiology laboratories and their potential impact on patient management. 2014. 2014: pp. 375681.
44. Hou, Z., An, Y., Hjort, K., Hjort, K., Sandegren, L., Wu, Z., Time lapse investigation of antibiotic susceptibility using a microfluidic linear gradient 3D culture device. Lab Chip, 2014. 14(17): pp. 3409-18.
45. Kim, K.P., Kim, Y. G., Choi, C. H., Kim, H. E., Lee, S. H., Chang, W. S., Lee, C. S., In situ monitoring of antibiotic susceptibility of bacterial biofilms in a microfluidic device. Lab Chip, 2010. 10(23): pp. 3296-9.
46. Choi, J., Yoo, J., Lee, M., Kim, E. G., Lee, J. S., Lee, S., Joo, S., Song, S. H., Kim, E. C., Lee, J. C., Kim, H. C., Jung, Y. G., Kwon, S., A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Science Translational Medicine, 2014. 6(267).
47. Syal, K., Iriya, R., Yang, Y. Z., Yu, H., Wang, S. P., Haydel, S. E., Chen, H. Y., Tao, N. J., Antimicrobial Susceptibility Test with Plasmonic Imaging and Tracking of Single Bacterial Motions on Nanometer Scale. Acs Nano, 2016. 10(1): pp. 845-852.
48. Kinnunen, P., Sinn, I., McNaughton, B. H., Newton, D. W., Burns, M. A., Kopelman, R. Monitoring the growth and drug susceptibility of individual bacteria using asynchronous magnetic bead rotation sensors. Biosensors & Bioelectronics, 2011. 26(5): pp. 2751-2755.
49. Kinnunen, P., McNaughton, B. H., Albertson, T., Sinn, I., Mofakham, S., Elbez, R., Newton, D. W., Hunt, A., Kopelman, R. Self-assembled magnetic bead biosensor for measuring bacterial growth and antimicrobial susceptibility testing. Small, 2012. 8(16): pp. 2477-82.
50. Avesar, J., Rosenfeld, D., Truman-Rosentsvit, M., Ben-Arye, T., Geffen, Y., Bercovici, M., Levenberg, S. Rapid phenotypic antimicrobial susceptibility testing using nanoliter arrays. Proceedings of the National Academy of Sciences of the United States of America, 2017. 114(29): pp. E5787-E5795.
51. Cira, N.J., Ho, J. Y., Dueck, M. E., Weibel, D. B., A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics. Lab on a Chip, 2012. 12(6): pp. 1052-1059.
52. Azizi, M., Zaferani, M., Dogan, B., Zhang, S., Simpson, K. W., Abbaspourrad, A., Nanoliter-Sized Microchamber/Microarray Microfluidic Platform for Antibiotic Susceptibility Testing. 2018. 90(24): pp. 14137-14144.
53. Kim, S.C., Cestellos-Blanco, S., Inoue, K., Zare, R. N., , Miniaturized Antimicrobial Susceptibility Test by Combining Concentration Gradient Generation and Rapid Cell Culturing. Antibiotics (Basel), 2015. 4(4): p. 455-66.