研究生: |
甘松融 Kan, Song Rong |
---|---|
論文名稱: |
一鍋法製備高螢光氮摻雜石墨烯量子點感測與篩選蜂蜜中的四環素 One-Pot Synthesis of Highly Fluorescent N-doped Graphene Quantum Dots for Sensing and Screening of Tetracycline in Honey |
指導教授: |
凌永健
Ling, Yong Chien |
口試委員: |
黃賢達
Huang, Shang-Da 麥富德 Mai, Fu Der 凌永健 Ling, Yong Chien |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 含氮石墨烯量子點 、螢光 、四環素 、蜂蜜 |
外文關鍵詞: | N-doped Graphene Quantum Dots, fluorescent, tetracycline, honey |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯量子點具有量子限制侷限(quantum confinement)和邊緣效應(edge effect),其特殊性質近年來受到高度重視,因此得以在螢光應用上蓬勃發展。石墨烯量子點具有低毒性、溶解度高、化學惰性和穩定的發光性質,主要用於感測器和生物成像。
本研究分兩部分,第一部分研發由下向上法合成石墨烯量子點,利用檸檬酸與兩個不同的胺基酸(甘胺酸、半胱胺酸)在一鍋脫水反應後,合成出兩種摻雜氮原子的石墨烯量子點(N-doped Graphene Quantum Dots, N-GQDs),胺基酸在此反應中同時扮演碳源和氮源的雙重角色,以甘胺酸合成的量子產率約為14%,半胱胺酸合成的量子產率約為58%,相較於其他一鍋法合成的GQD,具有較高螢光產率之優點。合成出的產物,利用FTIR、PL、TEM、UV、AFM與XPS等儀器進行表徵分析,結果顯示我們成功的以快速、簡易的一鍋法方式合成摻雜氮原子的石墨烯量子點。
第二部分利用N-GQDs的優點,運用在蜂蜜中四環素(tetracycline)的感測,發展快速篩選方法,達到零有機溶劑、簡便、快速的目的。感測機制基於操控N-GQDs螢光的開閉、N-GQDs和四環素間的π-π堆疊作用力、和猝滅N-GQD的螢光。利用標準添加法測定蜂蜜中的四環素,偵測極限為4 ppb,回收率為77-112%,相對標準偏差為14.5%。應用於21件市售蜂蜜樣品的快篩,篩選結果顯示4件有四環素殘留量。
Graphene quantum dots (GQDs) are nano-sized materials having unique properties like the quantum confinement effect and edge effect which has led to its emergence in fluorescence-based applications. The low toxicity, high solubility, chemically inertness, and stable luminescent properties of GQDs must be explored further for its application in sensors and bio imaging studies.
A one-pot synthesis of GQDs based on the bottom-up approach has been developed in this study with citric acid and amino acids(glycine、cysteine) precursors to successfully achieve two N-doped Graphene Quantum Dots (N-GQD). In this reaction, amino acid plays dual role of donating both carbon and nitrogen atom. These as-prepared N-GQDs have a high quantum yield of 14(glycine) and 58%(cysteine) as compared to previously reported GQDs. The final product has been characterized using FT-IR, PL, TEM, UV-Vis, XPS, and AFM, which shows successful nitrogen doping as GQDs.
These highly fluorescent N-GQDs have been used for faster sensing of tetracycline in honey, making this, a green method as it does not involve the use of any toxic reagent. The detection is based on the on-off mechanism and fluorescent control of N-GQDs. The sensing is primarily based on a π-π stacking interaction between N-GQD and tetracycline by quenching the fluorescence of N-GQDs. Detection of honey has been carried out using a standard addition method. A detection limit of 4 μg·L−1, recovery of 77-112%, and a relative standard deviation of 14.5% is a proof to a highly sensitive detection. Further, rapid detection of 21 commercial honey samples has been carried out, of which, four samples have been found with the presence of tetracyclin.
1. 盧柏樑, 高醫醫訊,2003.
2. Fleming, A. G. Can. Med. Assoc. J. 20, 11–13 (1929).
3. http://www.kmuh.org.tw/www/kmcj/data/10303/17.htm.(上網日期:2015/06/22)
4. Schatz, A. and Bugie, E. & Waksman, S. A. Streptomycin, Proc. Soc. Exp. Biol. Med. 55,66–69 (1944).
5. 衛生署食品藥物管理局 http://www.ncfser.tw/(上網日期:2015/06/22)
6. 廖弘玉, 東吳大學博士論文, 2011
7. haywood vb, quintessence int,1992,23:471-488.
8. 四環素類抗生素典型藥物的結構與性質http://www.gdczwx.com:8090/cai/yj/ywf/content/0314/031404/03140401/03140401.htm(上網日期:2015/06/22)
9. Snyder, L. m, R. J. J. Kirkland, J. W. Dolan, Introduction to Modern Liquid Chromatography
10. M. Jeon and I. R. Paeng, analytica chimica acta 626 (2008) 180–185.
11. Lequin, R. (2005). "Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA)". Clin. Chem. 2005, 51 (12): 2415–8.
12. Pean, A., N. Pelanvota, C. M. Lino, M. I. N. Silveira, and P. Solich. J. Agric. Food Chem. 2005, 53, 3784-3788.
13. Eng, J. K., A.L. McCormack, J.R. Yates III, J. Am. Soc. Mass Spectrom, 5 (1994), p. 976
14. 行政院衛生署, 署授食字第1011902056號, 2012
15. ska,Z. B. M. lebioda and J. Namies´nik Trends in Analytical Chemistry, Vol. 30, No. 7, 2011
16. Reybroeck,W., S.Ooghe, H.D.Brabander, E. Daeseleire, J. Agric. Food Chem. 2007, 55, 8359–8366
17. Yang, X., Y. Luo, S. Zhu,Y. Feng,Y. Zhuo,Y. Dou, Biosensors and Bioelectronics 56 (2014) 6–11
18. Leng,F., X. Zhao, J. Wang, Y.F. Li, Talanta 107 (2013) 396–401
19. Eda,G., Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen and M. Chhowalla, Adv. Mater., 2010, 22, 505–509.
20. Pan,D. Y., J. C. Zhang, Z. Li and M. H. Wu, Adv. Mater., 2010, 22, 734–738
21. Zhu,S., J. Zhang, S. Tang, C. Qiao, L. Wang, H. Wang, X. Liu, B. Li, Y. Li, W. Yu, X. Wang, H. Sun and B. Yang, Adv. Funct. Mater., 2012, 22, 4732–4740..
22. Li,L., G. Wu, G. Yang, J. Peng, J. Zhao and J.-J. Zhu. Nanoscale, 2013, 5, 4015
23. Li,L. L., J. Ji, R. Fei, C. Z. Wang, Q. Lu, J. R. Zhang, L. P. Jiang and J. J. Zhu, Adv. Funct. Mater., 2012, 22, 2971–2979.
24. Dong,Y., J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin and G. Chen, Carbon, 2012, 50, 4738–4743.
25. Zhao,H., Y. Chang, M. Liu, S. Gao, H. Yu and X. Quan, Chem. Commun., 2013, 49, 234–236.
26. Wang,D., L. Wang, X. Dong, Z. Shi, J. Hin, , Carbon 50 (2012)2147–2154.
27. Dong,Y., C. Chen, X. Zheng, L. Gao, Z. Cui, H. Yang, C. Guo, Y. Chi and C. M. Li, J. Mater. Chem., 2012, 22, 8764–8766.
28. Zhang,C., Y. Liu, X.-Q. Xiong, L.-H. Peng, L. Gan, C.-F. Chen and H.-B. Xu, Org. Lett., 2012, 14, 5912–5915.
29. Zhuo,S., M. Shao and S. T. Lee, ACS Nano, 2012, 6, 1059–1064.
30. Liu, Q., B. Guo, Z. Rao, B. Zhang and J. R. Gong, Nano Lett. 2013, 13, 2436–2441.
31. Dong,Y., G. Li, N. Zhou, R. Wang, Y. Chi, and G. Chen, Anal. Chem. 2012, 84, 8378−8382
32. Martínez, S. B., Á. Inmaculada, L. Lorente, and M. Valcárcel Anal. Chem. 2014, 86, 12279−12284
33. Dong,Y., R. Wang, W. Tian, Y. Chi and G. Chen RSC Adv., 2014, 4, 3701–3705
34. Liu,Q., B. Guo, Z. Rao, B. Zhang and J. R. Gong, Nano Lett. 2013, 13, 2436–2441.
35. Zhang,C., Y. Liu, X.Q. Xiong, L.H. Peng, L. Gan, C.F. Chen and H.B. Xu, Org. Lett., 2012, 14, 5912–5915.
36. 鄭皓均, 國立宜蘭大學碩士論文, 2009
37. 蔡美麗, 羅瀚倫, 許家銓, 連淑華, 邱怡寧, 許鳳麟, 葉美伶, 邱進益, 林嘉伯, 藥物食品檢驗局調查研究年報, 2007
38. Cantor, C. P. and P. R. Schimmel, BIOPHYSICAL CHEMISTRY, Part II. Techniques for the study of biological structure and function. Page 433-465.
39. Brouwer,A. M., Pure Appl. Chem. Vol. 83, No. 12, pp. 2213–2228, 2011.
40. Föster,T., Naturiwiss. 1949, 36, 186.
41. Ballew,R. M., Elizabeth A. Brown, J. N. Demas, D. Nesselrodt and B. A. DeGraff J. Chem. Educ. 1990, 67 (12), p 1065
42. Fan,L., Y. Hu, X. Wang, L. Zhang, F. Li, D. Ham, Z. Li, Q. Zhang, Z. Wang, L. Niu, Talanta 101 (2012) 192–197.
43. Qu,D., M. Zheng, P. Du, Y. Zhou, L. Zhang, Di Li, H. Tan, Z. Zhao, Z. Xied and Z. Sun, Nanoscale, 2013, 5, 12272
44. Pan,D., J. Zhang, Z. Li and M. Wu, Adv. Mater., 2010, 22734–738.
45. Shen,J., Y. Zhu, C. Chen, X. Yang and C. Li, Chem. Commun., 2011, 47, 2580–2582.
46. Li, L. L., Ji, J.,Fei, R., Wang, C. Z., Lu, Q., Zhang, J .R., Jiang,L.-P., Zhu, J. J.,2012a.Adv. Funct. Mater.22(14),2971–2979
47. Zhang,J., H. Yang, G. Shen, P. Cheng, J. Zhang and S. Guo Chem. Commun., 2010, 46, 1112–1114
48. Sahu,S., B. Behera, T. K. Maiti and S. Mohapatra, Chem.Commun., 2012, 48, 8835.
49. Wu, Z. L., M. X. Gao, T. T. Wang, X. Y. Wan, L. L. Zhenga and C. Z. Huang Nanoscale, 2014, 6, 3868
50. Miteva,T., L. Palmer, L. Kloppenburg, D. Neher, and Uwe H. F. Bunz, Macromolecules 2000, 33, 652-654
51. Liu,J.J., X.L. Zhang, Z.X. Cong, Z.T. Chen, H.-H. Yang and G. Chen Nanoscale, 2013, 5, 1810
52. Li,S., Y. Li, J. Cao, J. Zhu, L. Fan, and X. Li Anal. Chem. 2014, 86, 10201−10207