簡易檢索 / 詳目顯示

研究生: 甘松融
Kan, Song Rong
論文名稱: 一鍋法製備高螢光氮摻雜石墨烯量子點感測與篩選蜂蜜中的四環素
One-Pot Synthesis of Highly Fluorescent N-doped Graphene Quantum Dots for Sensing and Screening of Tetracycline in Honey
指導教授: 凌永健
Ling, Yong Chien
口試委員: 黃賢達
Huang, Shang-Da
麥富德
Mai, Fu Der
凌永健
Ling, Yong Chien
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 74
中文關鍵詞: 含氮石墨烯量子點螢光四環素蜂蜜
外文關鍵詞: N-doped Graphene Quantum Dots, fluorescent, tetracycline, honey
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯量子點具有量子限制侷限(quantum confinement)和邊緣效應(edge effect),其特殊性質近年來受到高度重視,因此得以在螢光應用上蓬勃發展。石墨烯量子點具有低毒性、溶解度高、化學惰性和穩定的發光性質,主要用於感測器和生物成像。
      本研究分兩部分,第一部分研發由下向上法合成石墨烯量子點,利用檸檬酸與兩個不同的胺基酸(甘胺酸、半胱胺酸)在一鍋脫水反應後,合成出兩種摻雜氮原子的石墨烯量子點(N-doped Graphene Quantum Dots, N-GQDs),胺基酸在此反應中同時扮演碳源和氮源的雙重角色,以甘胺酸合成的量子產率約為14%,半胱胺酸合成的量子產率約為58%,相較於其他一鍋法合成的GQD,具有較高螢光產率之優點。合成出的產物,利用FTIR、PL、TEM、UV、AFM與XPS等儀器進行表徵分析,結果顯示我們成功的以快速、簡易的一鍋法方式合成摻雜氮原子的石墨烯量子點。
    第二部分利用N-GQDs的優點,運用在蜂蜜中四環素(tetracycline)的感測,發展快速篩選方法,達到零有機溶劑、簡便、快速的目的。感測機制基於操控N-GQDs螢光的開閉、N-GQDs和四環素間的π-π堆疊作用力、和猝滅N-GQD的螢光。利用標準添加法測定蜂蜜中的四環素,偵測極限為4 ppb,回收率為77-112%,相對標準偏差為14.5%。應用於21件市售蜂蜜樣品的快篩,篩選結果顯示4件有四環素殘留量。


    Graphene quantum dots (GQDs) are nano-sized materials having unique properties like the quantum confinement effect and edge effect which has led to its emergence in fluorescence-based applications. The low toxicity, high solubility, chemically inertness, and stable luminescent properties of GQDs must be explored further for its application in sensors and bio imaging studies.
    A one-pot synthesis of GQDs based on the bottom-up approach has been developed in this study with citric acid and amino acids(glycine、cysteine) precursors to successfully achieve two N-doped Graphene Quantum Dots (N-GQD). In this reaction, amino acid plays dual role of donating both carbon and nitrogen atom. These as-prepared N-GQDs have a high quantum yield of 14(glycine) and 58%(cysteine) as compared to previously reported GQDs. The final product has been characterized using FT-IR, PL, TEM, UV-Vis, XPS, and AFM, which shows successful nitrogen doping as GQDs.
    These highly fluorescent N-GQDs have been used for faster sensing of tetracycline in honey, making this, a green method as it does not involve the use of any toxic reagent. The detection is based on the on-off mechanism and fluorescent control of N-GQDs. The sensing is primarily based on a π-π stacking interaction between N-GQD and tetracycline by quenching the fluorescence of N-GQDs. Detection of honey has been carried out using a standard addition method. A detection limit of 4 μg·L−1, recovery of 77-112%, and a relative standard deviation of 14.5% is a proof to a highly sensitive detection. Further, rapid detection of 21 commercial honey samples has been carried out, of which, four samples have been found with the presence of tetracyclin.

    目錄 第一章 緒論 1 1.1 研究背景 1 1.2 四環素檢驗方法 5 1.3 石墨烯量子點 9 1.4 雜化石墨烯量子點 12 1.5 石墨烯量子點的應用 13 1.6 研究動機與目標 16 第二章 工作原理 17 2.1 螢光原理 17 2.2 量子產率 18 2.3 pH對螢光的影響 19 2.4 螢光消光(Quench) 19 2.5 π-π堆疊作用力(π-π stacking interaction)…………………..19 2.6 雜化石墨烯量子點與四環素間的作用力 21 第三章 實驗方法 22 3.1 N-GQDs樣品製備 22 3.2 S、N-GQDs樣品製備 23 3.3 從下而上製備GQDs之機制 25 3.3 N-GQDs和S、N-GQDs的量子產率 26 3.4 儀器設備 28 3.4.1 可見光紫外光分光光譜儀 29 3.4.2 螢光光譜儀 29 3.4.3 高解析X射線光電子能譜儀 30 3.4.4 傅立葉轉換紅外光譜儀 30 3.4.5 穿透式電子顯微鏡 31 3.4.6 原子力顯微鏡 31 3.5實驗設備 32 3.6實驗藥品 32 第四章 結果與討論 33 4.1 N-GQDs之特性分析 33 4.1.1 N-GQDs的TEM圖像 33 4.1.2 N-GQDs的AFM圖像 35 4.1.3 N-GQDs的高解析X射線光電子能譜分析 36 4.1.4 N-GQDs的FTIR光譜圖 38 4.1.5 N-GQDs的紫外光吸收光譜圖 39 4.1.6 N-GQDs在不同激發波長下的螢光放射光譜 41 4.1.7 N-GQDs的螢光放射光譜 42 4.2 S、N-GQDs之特性分析 43 4.2.1 S、N-GQDs的TEM圖像 43 4.2.2 S、N-GQDs的AFM圖像 45 4.2.3 S、N-GQDs的高解析X射線光電子能譜分析 46 4.2.4 S、N-GQDs的FTIR光譜圖 48 4.2.5 S、N-GQDs的紫外光吸收光譜圖 49 4.2.6 S、N-GQDs在不同激發波長下的熒光放射光譜 51 4.2.7 S、N-GQDs的螢光放射光譜 52 4.3兩種含氮石墨烯量子點的比較 53 4.4 N-GQDs的干擾物測定 57 4.5 不同pH下N-GQDs的螢光強度 58 4.6 不同濃度的四環素對N-GQDs的影響 59 4.7 N-GQDs應用在分析蜂蜜中的四環素 63 4.8 回收率測定 66 4.9 N-GQDs應用在分析蜂蜜中的四環素 67 第五章 結論 69 第六章 參考文獻 70

    1. 盧柏樑, 高醫醫訊,2003.
    2. Fleming, A. G. Can. Med. Assoc. J. 20, 11–13 (1929).
    3. http://www.kmuh.org.tw/www/kmcj/data/10303/17.htm.(上網日期:2015/06/22)
    4. Schatz, A. and Bugie, E. & Waksman, S. A. Streptomycin, Proc. Soc. Exp. Biol. Med. 55,66–69 (1944).
    5. 衛生署食品藥物管理局 http://www.ncfser.tw/(上網日期:2015/06/22)
    6. 廖弘玉, 東吳大學博士論文, 2011
    7. haywood vb, quintessence int,1992,23:471-488.
    8. 四環素類抗生素典型藥物的結構與性質http://www.gdczwx.com:8090/cai/yj/ywf/content/0314/031404/03140401/03140401.htm(上網日期:2015/06/22)
    9. Snyder, L. m, R. J. J. Kirkland, J. W. Dolan, Introduction to Modern Liquid Chromatography
    10. M. Jeon and I. R. Paeng, analytica chimica acta 626 (2008) 180–185.
    11. Lequin, R. (2005). "Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA)". Clin. Chem. 2005, 51 (12): 2415–8.
    12. Pean, A., N. Pelanvota, C. M. Lino, M. I. N. Silveira, and P. Solich. J. Agric. Food Chem. 2005, 53, 3784-3788.
    13. Eng, J. K., A.L. McCormack, J.R. Yates III, J. Am. Soc. Mass Spectrom, 5 (1994), p. 976
    14. 行政院衛生署, 署授食字第1011902056號, 2012
    15. ska,Z. B. M. lebioda and J. Namies´nik Trends in Analytical Chemistry, Vol. 30, No. 7, 2011
    16. Reybroeck,W., S.Ooghe, H.D.Brabander, E. Daeseleire, J. Agric. Food Chem. 2007, 55, 8359–8366
    17. Yang, X., Y. Luo, S. Zhu,Y. Feng,Y. Zhuo,Y. Dou, Biosensors and Bioelectronics 56 (2014) 6–11
    18. Leng,F., X. Zhao, J. Wang, Y.F. Li, Talanta 107 (2013) 396–401
    19. Eda,G., Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen and M. Chhowalla, Adv. Mater., 2010, 22, 505–509.
    20. Pan,D. Y., J. C. Zhang, Z. Li and M. H. Wu, Adv. Mater., 2010, 22, 734–738
    21. Zhu,S., J. Zhang, S. Tang, C. Qiao, L. Wang, H. Wang, X. Liu, B. Li, Y. Li, W. Yu, X. Wang, H. Sun and B. Yang, Adv. Funct. Mater., 2012, 22, 4732–4740..
    22. Li,L., G. Wu, G. Yang, J. Peng, J. Zhao and J.-J. Zhu. Nanoscale, 2013, 5, 4015
    23. Li,L. L., J. Ji, R. Fei, C. Z. Wang, Q. Lu, J. R. Zhang, L. P. Jiang and J. J. Zhu, Adv. Funct. Mater., 2012, 22, 2971–2979.
    24. Dong,Y., J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin and G. Chen, Carbon, 2012, 50, 4738–4743.
    25. Zhao,H., Y. Chang, M. Liu, S. Gao, H. Yu and X. Quan, Chem. Commun., 2013, 49, 234–236.

    26. Wang,D., L. Wang, X. Dong, Z. Shi, J. Hin, , Carbon 50 (2012)2147–2154.
    27. Dong,Y., C. Chen, X. Zheng, L. Gao, Z. Cui, H. Yang, C. Guo, Y. Chi and C. M. Li, J. Mater. Chem., 2012, 22, 8764–8766.
    28. Zhang,C., Y. Liu, X.-Q. Xiong, L.-H. Peng, L. Gan, C.-F. Chen and H.-B. Xu, Org. Lett., 2012, 14, 5912–5915.
    29. Zhuo,S., M. Shao and S. T. Lee, ACS Nano, 2012, 6, 1059–1064.
    30. Liu, Q., B. Guo, Z. Rao, B. Zhang and J. R. Gong, Nano Lett. 2013, 13, 2436–2441.
    31. Dong,Y., G. Li, N. Zhou, R. Wang, Y. Chi, and G. Chen, Anal. Chem. 2012, 84, 8378−8382
    32. Martínez, S. B., Á. Inmaculada, L. Lorente, and M. Valcárcel Anal. Chem. 2014, 86, 12279−12284
    33. Dong,Y., R. Wang, W. Tian, Y. Chi and G. Chen RSC Adv., 2014, 4, 3701–3705
    34. Liu,Q., B. Guo, Z. Rao, B. Zhang and J. R. Gong, Nano Lett. 2013, 13, 2436–2441.
    35. Zhang,C., Y. Liu, X.Q. Xiong, L.H. Peng, L. Gan, C.F. Chen and H.B. Xu, Org. Lett., 2012, 14, 5912–5915.
    36. 鄭皓均, 國立宜蘭大學碩士論文, 2009
    37. 蔡美麗, 羅瀚倫, 許家銓, 連淑華, 邱怡寧, 許鳳麟, 葉美伶, 邱進益, 林嘉伯, 藥物食品檢驗局調查研究年報, 2007
    38. Cantor, C. P. and P. R. Schimmel, BIOPHYSICAL CHEMISTRY, Part II. Techniques for the study of biological structure and function. Page 433-465.
    39. Brouwer,A. M., Pure Appl. Chem. Vol. 83, No. 12, pp. 2213–2228, 2011.
    40. Föster,T., Naturiwiss. 1949, 36, 186.
    41. Ballew,R. M., Elizabeth A. Brown, J. N. Demas, D. Nesselrodt and B. A. DeGraff J. Chem. Educ. 1990, 67 (12), p 1065
    42. Fan,L., Y. Hu, X. Wang, L. Zhang, F. Li, D. Ham, Z. Li, Q. Zhang, Z. Wang, L. Niu, Talanta 101 (2012) 192–197.
    43. Qu,D., M. Zheng, P. Du, Y. Zhou, L. Zhang, Di Li, H. Tan, Z. Zhao, Z. Xied and Z. Sun, Nanoscale, 2013, 5, 12272
    44. Pan,D., J. Zhang, Z. Li and M. Wu, Adv. Mater., 2010, 22734–738.
    45. Shen,J., Y. Zhu, C. Chen, X. Yang and C. Li, Chem. Commun., 2011, 47, 2580–2582.
    46. Li, L. L., Ji, J.,Fei, R., Wang, C. Z., Lu, Q., Zhang, J .R., Jiang,L.-P., Zhu, J. J.,2012a.Adv. Funct. Mater.22(14),2971–2979
    47. Zhang,J., H. Yang, G. Shen, P. Cheng, J. Zhang and S. Guo Chem. Commun., 2010, 46, 1112–1114
    48. Sahu,S., B. Behera, T. K. Maiti and S. Mohapatra, Chem.Commun., 2012, 48, 8835.
    49. Wu, Z. L., M. X. Gao, T. T. Wang, X. Y. Wan, L. L. Zhenga and C. Z. Huang Nanoscale, 2014, 6, 3868
    50. Miteva,T., L. Palmer, L. Kloppenburg, D. Neher, and Uwe H. F. Bunz, Macromolecules 2000, 33, 652-654
    51. Liu,J.J., X.L. Zhang, Z.X. Cong, Z.T. Chen, H.-H. Yang and G. Chen Nanoscale, 2013, 5, 1810
    52. Li,S., Y. Li, J. Cao, J. Zhu, L. Fan, and X. Li Anal. Chem. 2014, 86, 10201−10207

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE