研究生: |
陳偉暉 Chen, Wei-Hui |
---|---|
論文名稱: |
量態分子動力分析奈米管光電化學太陽電池性能 Quantum Molecular Dynamics Analysis on the Performance of Nanotube Photo-Electrochemical Solar Cells |
指導教授: |
洪哲文
Hong, Che-Wun |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 111 |
中文關鍵詞: | 奈米科技 、光電化學太陽電池 、分子動力學 |
外文關鍵詞: | nanotechnology, Photo-electrochemical Solar Cell, Molecular Dynamic |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年利用奈米科技發展不同二氧化鈦結構奈米柱,奈米井以及奈米管是為增加工作電極反應面積,提升光電化學太陽電池性能。然而在光電化學太陽電池中,氧化還原對碘離子與碘錯離子擴散性受限於空間尺度影響與實驗難度,因此本論文首先利用分子動力學理論與方法,模擬碘離子與碘錯離子在工作電極中移動情形。模擬結果顯示在奈米管中,反應面積增加乘上碘離子與碘錯離子之擴散係數減小,於孔隙率0.75時有一最佳值存在,使用模擬最佳化的數值計算電池性能與奈米晶粒薄膜比較發現電流密度可增加53%,而電池效率亦可改善66%。由於光電化學太陽電池相關零組件設計參數以及操作參數各個環環相扣,直接間接影響太陽電池整體性能,因此本論文第二部分則是透過計算離子傳輸與電子損失模型預測太陽電池效率。模擬結果顯示奈米管於孔隙率0.75以及高度18μm(整體厚度60□m)時有一最佳電池性能,再者使用半導體量子點及植物色素取代傳統釕錯合物染料能夠降低材料成本價格,置換固膠態電解質增加電池穩定性亦是本研究重點。於操作參數研究結果顯示,電池操作溫度於313K附近有一最佳太陽電池性能,並且隨著太陽電池遮蔽面積增加以及光強度的減弱使其整體太陽電池性能隨之降低,唯後者低照光度不影響其電池效率。
本論文第三部分則是使用半導體量子點(CdS)以及改質植物色素(cholorophyll-a derivative) 取代傳統光電化學太陽電池中昂貴釕錯合物染料嘗試其可行性。本研究利用第一原理計算,建立CdS原子團以及葉綠素最基本的原子模型與衍生物得最佳化結構,再以時間獨立與時間相依密度泛涵理論,搭配B3LYP與PBE兩種不同的交換相關泛涵計算:能隙寬、電子軌道、態密度分佈、最高占據分子軌域,以及最低未佔據分子軌域。結果顯示量子力學模擬得到能隙寬與實驗值趨勢相近。因此,於半導體量子點研究部分,可混合不同尺寸的量子點增加太陽光的吸收率;在植物色素研究部分顯示,Chlorin-H+3 位置較容易與工作電極鍵結,其較寬的光譜以及低成本材料亦是天然生物色素主要的特性。
[1]. M. Gratzel, Powering the planet, Nature, vol. 403, pp. 363, 2000.
[2]. D. Chapin, C. Fuller and G. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power, J. Appl. Phys., vol. 25, pp. 676-677, 1954.
[3]. R. R. King, D. C. Law, K. M. Edmondson, C.M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif and N. H. Karam, 40% efficient metamorphic GaInP/GaLnAs/Ge multijunctions solar cells, Appl. Phy. Lett., vol. 90, pp. 183516, 2007.
[4]. E. Bequerel, Recherches sur les effects de la radiation chimique de la lumiere solaire, au moyen des courants electriques, C.R. Acad. Sci., vol. 9, pp. 145-149, 1839.
[5]. A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, vol. 238, pp. 37-38, 1972.
[6]. From the World Wide Web: http://nsl.caltech.edu/energy
[7]. M. Gratzel, Recent advances in sensitized mesoscopic solar cells, Acc. Chem. Res., vol. 42, pp. 1788-1798, 2009.
[8]. M.A. Green, K. Emery, Y. Hisikawa and W. Warta, Solar cell efficiency tables (version 34), Photovolt. Res. Appl., vol. 17, pp. 320-326, 2009.
[9]. S.K. Deb, Dye-sensitized TiO2 thin-film solar cell research at the National Renewable Energy Laboratory (NREL), Sol. Energy Mater. Sol. Cell, vol. 88, pp. 1-10, 2005.
[10]. B. O’Regan and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, vol. 353, pp. 737-740, 1991.
[11]. C.C. Chen, W.D. Jehng, L.L. Li and W.G. Diau, Enhanced efficiency of dye-sensitized solar cells using Anodic titanium oxide nanotube arrays, J. Electrochem. Soc., vol. 156, pp. C304-C312, 2009.
[12]. M. Macak, H. Tsuchiya, A. Ghicov and P. Schmuki, Dye-sensitized anodic TiO2 nanotubes, Electrochem. Commun., vol. 7, pp. 1133-1137, 2005.
[13]. D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin and M. Gratzel, Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cell, ACS Nano, vol. 2, pp. 1113-1116, 2008.
[14]. J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki and A. B. Walker, Dye-sensitized solar cells based on oriented TiO2 nanotube array: transport, trapping and transfer of electrons, J. Am. Chem. Soc., vol. 130, pp. 13364-13372, 2008.
[15]. A. Ghicov, S. Albu, R. Hahn, D. Kim, T. Stergiopoulos, J. Kunze, C. A. Schiller, P. Falaras and P. Schmuki, TiO2 nanotube in dye-sensitized solar cells: critical factors for the conversion efficiency, Chem. Asian J., vol. 4, pp. 520-525, 2009.
[16]. M. Gratzel, Solar energy conversion by dye-sensitized photovoltaic cells, Inorg. Chem., vol. 44, pp. 6841-6851, 2005.
[17]. P. Roy, D. Kim, K. Lee, E. Spiecker and P. Schmuki, TiO2 nanotubes and their application in dye-sensitiazed solar cells, Nanoscale, vol. 2, pp. 45-59, 2010.
[18]. F. Cao, G. Oskam, G.J. Meyer and P.C. Searson, Electron transport in porous nanocrystalline TiO2 photoelectrochemical cells, J. Phys. Chem. B, vol. 100, pp. 17021-17027, 1996.
[19]. A. Solbrand, H. Lindstrom, H. Resmo, A. Hagfeldt and S.E. Lindquist, Electron transport in the nanostructured TiO2-electrolyte system studied with time-resolved photocurrents, J. Phys. Chem. B, vol. 101, pp. 2514-2518, 1997.
[20]. K. S. V. Santhanam and M. Sharon, Photoelectrochemical solar cells, Elsevier, New York, 1985.
[21]. M. Zistler, P. Wachter, C. Schreiner, M. Fleischmann, D. Gerhard, P. Wasserscheid, A. Hinsch and H. J. Gores, Temperature dependent impedance analysis of binary ionic liquid electrolytes for dye-sensitized solar cell, J. Electrochem. Soc., vol. 154, pp. B925-B930, 2007.
[22]. F. Hurd and R. Livingston, The quantum yields of some dye-sensitized photooxidations, J. Phys. Chem., vol. 44, pp. 865-873, 1940.
[23]. H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Dye sensitized zinc oxide: aqueous electrolyte/platinum photocell, Nature, vol. 261, pp. 402-403, 1976.
[24]. M. Gratzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, J. Photochem. Photobio., A, vol. 164, pp. 3-14, 2004.
[25]. A. Hagfeldt and M. Gratzel, Molecular photovoltaics, Acc. Chem. Res., vol. 33, pp. 269-277, 2000.
[26]. C.Y. Chen, M. Wang, J.Y. Li, N. Pootrakulchote, L. Alibabaei, C.H. Ngoc-Le, J.D. Decoppet, J.H. Tsai, C. Gratzel, C.G. Wu, S.M.Zakeeruddin and M. Gratzel, Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells, J. Am. Chem. Soc., vol. 3, pp. 3103-3109, 2009.
[27]. G. Wolfbauer, A. Bond, J. Eklund and D. MacFarlane, A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells, Sol. Energy Mater. Sol. Cell, vol. 70, pp. 85-101, 2001.
[28]. P. Wang, S. M. Zakeeruddin, J-E. Moser, R. Humphry-Baker and M. Gratzel, A solvent-free, SeCN-/(SeCN)3- based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cell, J. Am. Chem. Soc., vol. 126, pp. 7164-7165, 2009.
[29]. G. Oskam, B. V. Bergeron, G. J. Meyer and P. C. Searson, Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells, J. Phys. Chem. B, vol. 105, pp. 6867-6873, 2001.
[30]. M. Gratzel, Photoelectrochemical cells, Nature, vol. 414, pp. 338-344, 2001.
[31]. D. Kuang, P. Wang, S. Lto, S. M. Zakeeruddin and M. Gratzel, Stable mesoscopic dye-sensitized solar cells based on tetracyanoborate ionic liquid electrolyte, J. Am. Chem. Soc., vol. 128, pp. 7732-7733, 2006.
[32]. N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhote, H. Pettersson, A. Azam and M. Gratzel, The performance and stability of ambient temperature molten salts for solar cell applications, J. Electrochem. Soc., vol. 143, pp. 3099-3108, 1996.
[33]. P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin and M. Gratzel, Stable >8% efficient nanocrystalline dye-sensitized solar cell based on an electrolyte of low volatility, Appl. Phys. Lett., vol. 86, pp. 123508, 2005.
[34]. U. Diebold, The surface science of titanium dioxide, Surf. Sci. Rep., vol. 48, pp. 53-229, 2003.
[35]. W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, Hybrid nanorod-polymer solar cells, Science, vol. 295, pp. 2425-2427, 2002.
[36]. S. U. M. Khan and T. Sultana, Photoresponse of n-TiO2 thin film and nanowire electrodes, Sol. Energy Mater. Sol. Cell, vol. 76, pp. 211-221, 2003.
[37]. K. Yu and J. Chen, Enhancing solar cell efficiencies through 1-D nanostructures, Nanoscale Res. Lett., vol. 4, pp. 1-10, 2009.
[38]. R. H. Tao, J.M. Wu, H. X. Xue, X. M. Song, X. Pan, X. Q. Fang, X. D. Fang and S. Y. Dai, A novel approach to titania nanowire arrays as photoanodes of back-illuminated dye-sensitized solar cells, J. Power Sources, vol. 195, pp. 2989-2995, 2010.
[39]. J. Jiu, S. Isoda, F. Wang and M. Adachi, Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod-film, J. Phys. Chem. B, vol. 110, pp. 2087-2092, 2006.
[40]. S.H. Kang, S.H. Choi, M.S. Kang, J.Y. Kim, H.S. Kim, T. Hyeon and Y.E. Sung, Nanorod-based dye-sensitized solar cells with improved charge collection efficiency, Adv. Mater., vol. 20, pp. 54-58, 2008.
[41]. B.H. Lee, M.Y. Song, S.Y. Jang, S.M. Jo, S.Y. Kwak and D.Y. Kim, Charge transport characteristics of high efficiency dye-sensitized solar cells based on electrospun TiO2 nanorod photoelectrodes, J. Phys. Chem. C, vol. 113, pp. 21453-21457, 2009.
[42]. L.D. Marco, M. Manca, R. Giannuzzi, F. Malara, G. Melcarne, G. Ciccarella, I. Zama, R. Cingolani and G. Gigli, Novel preparation method of TiO2-nanorod-based photoelectrodes for dye-sensitized solar cells with improved light-harvesting efficiency, J. Phys. Chem. C, vol. 114, pp. 4228-4236, 2010.
[43]. U.E. Paula, E. Colavita, M.S. Doescher, M. Schiza and M.L. Myrick, Construction and characterization of a nanowell electrode, Nano Lett., vol. 2, pp. 641-645, 2002.
[44]. K. Ide, M. Fujimoto, T. Kado and S. Hayase, Increase in intensity of electrochemiluminescence from cell consisting of TiO2 nanohole array film, J. Electrochem. Soc., vol. 155, pp. B645-B649, 2008.
[45]. D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen and E.C. Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res., vol. 16, pp. 3331-3334, 2001.
[46]. D. Kim, A. Ghicov, S.P. Albu and P. Schmuki, Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells, J. Am. Chem. Soc., vol. 130, pp. 16454-16455, 2008.
[47]. C. Xu, P.H. Shin, L. Cao, J. Wu and D. Gai, Order TiO2 nanotube arrays on transparent conductive oxide for dye-sensitized solar cells, Chem. Mater., vol. 22, pp. 143-148, 2010.
[48]. V.V. Kislyuk and O.P. Dimitriev, Nanorods and nanotubes for solar cells, J. Nanosci. Nanotechnol., vol. 8, pp. 131-148, 2008.
[49]. M. E. Tuckerman, K. Laasonen, M. Sprik and M. Parrinello, Ab initio molecular dynamics simulation of the salvation and transport of hydronium and hydroxyl ions in water, J. Chem. Phys., vol. 103, pp. 150-161, 1995.
[50]. R. Vuilleumier and D. Borgis, An extend empirical valence bond model for describing proton transfer in H+(H2O)n clusters and liquid water, Chem. Phys. Lett., vol. 284, pp. 71-77, 1998.
[51]. J. Ennari, M. Elomaa and F. Sundholm, Modeling a polyelectrolyte system in water to estimate the ion-conductivity, Polymer, vol. 40, pp. 5035-5041, 1999.
[52]. G. Herlem, B. Lakard, P. Damay, F. Leclercq, S. Picaud and P. N. M. Hoang, Combined elastic neutron scattering experiment and molecular dynamics simulations on the concentrated liquid electrolyte NaI-3.3NH3, J. Mol. Liq., vol. 108, pp. 1-19, 2003.
[53]. G. Herlem, S. Picaud and P. N. M. Hoang, A Molecular dynamics simulation of the electrical conductivity behaviors of high concentrated liquid ammoniates Nal•αNH3:comparison with experimental measurements, J. Chem. Phys., vol. 122, pp. 171102, 2005.
[54]. S. L. Mayo, B. D. Olafson and W. D. Goddard, DREIDING: A generic force for molecular simulations, J. Phys. Chem., vol. 94, pp. 8897-8909, 1990.
[55]. S. Sodergren, A. Hagfeldt, J. Olsson and S.E. Lindquist, Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectronchemical cells, J. Phys. Chem., vol. 98, pp. 5552-5556 1994.
[56]. N. Papageorgiou, M. Gratzel and P. Infelta, On the relevance of mass transport in thin layer nanocrystalline photoelectrochemical solar cells, Sol. Energy Mater. Sol. Cell, vol. 44, pp. 405-438, 1996.
[57]. J. Ferber, R. Stangl and J. Luther, An electrical model of the dye-sensitized solar cell, Sol. Energy Mater. Sol. Cell, vol. 53, pp. 29-54, 1998.
[58]. M. Junghanel and H. Tributsch, Role of nanochemical environments in porous TiO2 in photocurrent efficiency and degradation in dye sensitized solar cell, J. Phys. Chem. B, vol. 109, pp. 22876-22883, 2005.
[59]. S. Chen, J. Weng, Y. Huang, C. Zhang, L. Hu, F. Kong, L. Wang and S. Dai, Numerical model analysis of the shaded dye-sensitized solar cell module, J. Phys. D: Appl. Phys., vol. 43, pp. 305102, 2010.
[60]. R. Kawano and M. Watanabe, Equilibrium potentials and charge transport of an I-/I3- redox couple in an ionic liquid, Chem. Commun., pp. 330-331, 2003.
[61]. L. M. Peter, D. J. Riley, E. J. Tull and K. G. U. Wijayantha, Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots, Chem. Commun., vol. 10, pp. 1030-1031, 2002.
[62]. I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 Films, J. Am. Chem. Soc., vol. 128, pp. 2385-2393, 2006.
[63]. J. L. Blackburn, D. C. Selmarten, R. J. Ellingson, M. Jones, O. Micic, and A. J. Nozik, Electron and hole transfer from indium phosphide quantum dots, J. Phys. Chem. B, vol. 109, pp. 2625-2631, 2005.
[64]. R. D. Schaller and V. I. Klimov, High efficiency carrier multiplication in PbSe nanocrystals: implication for solar energy conversion, Phys. Rev. Lett., vol. 92, pp. 186601, 2004.
[65]. S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina and E. H. Sargent, Solution-processed PbS quantum dot infrared photodetectors and photovoltaics, Nature Materials, vol. 4, pp. 138-142, 2005.
[66]. K. Yoshino, S. Lee, A. Fujii, H. Nakayama, W. Schneider, A. Naka and M. Ishikawa, Near IR and UV enhanced photoresponse of C60-doped semiconducting polymer photodiode, Adv. Mater., vol. 11, pp.1382–1385, 1999.
[67]. S. Hotchandani and P. V. Kamat, Charge-transfer processes in coupled semiconductor systems. Photochemistry and photoelectrochemistry of the colloidal cadmium sulfide-zinc oxide system, J. Phys. Chem., vol. 96, pp. 6834-6839, 1992.
[68]. R. Plass, S. Pelet, J. Krueger and M. Gratzel, Quantum dot sensitization of organic-inorganic hybrid solar cells, J. Phys. Chem. B, vol. 106, pp. 7578-7580, 2002.
[69]. H. J. Lee, P. Chen, S. J. Moon, F. Sauvage, K. Sivula, T. Bessho, D. R. Gamelin, P. Comte, S. M. Zakeeruddin, S. I. Seok, M. Gratzel and Md. K. Nazeeruddin Regenerative Pbs and CdS quantum dot sensitized solar cells with a complex as hole meditor, Langmuir, vol. 25, pp. 7602-7608, 2009.
[70]. H. Zeng, Z. A. Schelly, K. U. Noto and D. S. Marynick, Density functional study of structures of lead sulfide clusters (PbS)n (n = 1-9), J. Phys. Chem. A, vol. 109, pp. 1616-1620 2005.
[71]. J. M. Matxain, J. M. Mercero, J. E. Fowler and J. M. Ugalde, Clusters of II-VI materials: CdiXi, X = S, Se, Te, i ≤ 16, J. Phys. Chem. A, vol. 108, pp. 10502-10508, 2004.
[72]. K. Tennakone and A.R. Kumarasinghe, Nanoporous TiO2 photoanode sensitized with the flower pigment cyaniding, J. Photochem. Photobiol. A.Chem., vol. 108, pp. 193-195, 1997.
[73]. K. Hara and M. Kurashige, Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells, New J. Chem, vol. 27, pp. 783-785, 2003.
[74]. X. F. Wang, S. I. Sasaki, Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes, Langmuir, vol. 26, pp. 6320-6327, 2010.
[75]. M.P. Allen and D. J. Tildesley, Computer simulation of liquids, Oxford Science Publication, Chapter 5, 2004.
[76]. W. Smith, M. Leslie and T. R. Forester, The dlpoly_2 user manual”, CCLRC, Daresbury Laboratory, 2003.
[77]. H.J.C. Berendsen, J. P. M. Postma, W. van Gunsteren, A. DiNola and J. R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys., vol. 81, pp. 3684, 1984.
[78]. L. Verlet, Computer ‘experiment’ on classical fluids. I. thermodynamical properties of lennard-jones molecules, Phys. Rev., vol. 159, pp. 98-103, 1967.
[79]. J.P. Ryckaert, G. Ciccotti and H.J.C. Berendsen, Numerical integration of the Cartesian equations of motion of a system with constrains: molecular dynamics of n-Alkanes, J. Comput. Phys., vol. 23, pp. 327-341, 1997.
[80]. C.H. Cheng and C.W. Hong, Investigation of atomistic scale transport phenomena of the proton exchange membrane fuel cell, Transactions of the ASME, J. Fuel Cell Sci. and Technol., vol. 4, pp. 474-480, 2007.
[81]. P.Y. Chen, C.P. Chiu and C.W. Hong, Molecular structure and transport dynamics in Nafion and sulfonated poly (ether ether ketone ketone) membranes, J. Power Sources, vol. 194, pp. 746-752, 2009.
[82]. Y.H. Chen, W.H. Chen and C.W. Hong, Molecular simulation and performance prediction of photoelectrochemical solar cell, J. Electrochem. Soc., vol. 156, pp. P163-P169, 2009.
[83]. K. B. Oldham and J. C. Myland, Fundamentals of electrochemical science, Academic Press, San Diego, 1994.
[84]. K. Fredin, J. Nissfolk and A. Hagfeldt, Brownian dynamics simulation of electrons and ions in mesoporous films, Sol. Energy Mater. Sol. Cell, vol. 86, pp. 283-297, 2005.
[85]. H. K. Dunn and L. M. Peter, How efficient is electron collection in dye-sensitized solar cell? Comparison of different dynamic methods for the determination of the electron diffusion length, J. Phys. Chem. C, vol. 113, pp. 4726-4731, 2009.
[86]. J. V. D. Lagemaat and A. J. Frank, Effect of the surface-state distribution on electron transport in dye-sensitized TiO2 solar cell: Nonlinear electron-transport kinetics, J. Phys. Chem. B, vol. 104, pp. 4292-4294, 2000.
[87]. I. N. Levine, Quantum Chemistry (6th edition), Prentice Press, New York, 2008.
[88]. P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev., vol. 136, pp. B864-B871, 1964.
[89]. W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev., vol. 140, pp. A1133-A1138, 1965.
[90]. A.D. Becke, Density functional exchange energy approximation with correct asymptotic behaviour, Phys. Rev. A, vol. 38, pp. 3098-3100, 1988.
[91]. J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, vol. 45, pp. 13244-13249, 1992.
[92]. A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys., Rev. A, vol. 38, pp. 3098-3100, 1988.
[93]. C. Lee, W. Yang and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, vol. 37, pp. 785-789, 1988.
[94]. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., vol. 77, pp. 3865-3868, 1996.
[95]. Hypercube Inc., HyperChem reference manual, Chapter 8, 2002.
[96]. Y.H. Chen, Molecular simulation and performance prediction of ionic liquid dye-sensitized solar cells, PhD Thesis, National Tsing Hua University, Hsinchu, Taiwan, 2010.
[97]. M. Gratzel, The advent of mesoscopic injection solar cells, Prog. Photovolt: Res. Appl., vol. 14, pp. 429-442, 2006.
[98]. J. Nikolic, E. Exposito, J. Iniesta, J. Gonzalez-Garcia and V. Montiel, Theoretical concepts and applications of a rotating disk electrode, J. Chem. Educ., vol. 77, pp. 1191-1194, 2000.
[99]. V.G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, New Jersey, 1962.
[100]. X.F. Wang, C.H. Zhan, T. Maoka, Y. Wada and Y. Koyama, Fabrication of dye-sensitized solar cells using chlorophylls c1 and c2 and their oxidized forms c’1 and c’2 from Undaria pinnatifida (Wakame), Chem. Phys. Lett., vol. 447, pp. 79-85, 2007.
[101]. Y. L. Lee, C. F. Chi and S. Y. Liau, CdS/CdSe co-sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectrochemical cell, Chem. Mater, vol. 22, pp. 922-927, 2010.
[102]. X.F. Wang, Y. Koyama, O. Kitao, Y. Wada, S.I. Sasaki, H. Tamiaki and H. Zhou, Significant enhancement in the power-conversion efficiency of chlorophyll co-sensitized solar cells by mimicking the principles of natural photosynthetic light-harvesting complexes, Biosensors and Bioelectronics, vol. 25, pp. 1970-1976, 2010.
[103]. P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar and M. Gratzel, Gelation of ionic liquid-based electrolyte with silica nanoparticles for quasi-solid-state dye-sensitized solar cells, J. Am. Chem. Soc., vol. 125, pp. 1166-1167, 2003.
[104]. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi and M. Gratzel, A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte, Nature Materials, vol. 2, pp. 402-408, 2003.
[105]. P. Wang, S. M. Zakeeruddin, J. E. Moser and M. Gratzel, A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells, J. Phys. Chem. B, vol. 107, pp. 13280-13285, 2003.
[106]. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer and M. Gratzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photo-to-electron conversion efficiencies, Nature, vol. 395, pp. 583-585, 1998.
[107]. M. Berginc, U. Opara Krašovec, M. Hočevar and M. Topič, Performance of dye-sensitized solar cells based on ionic liquids: Effect of temperature and iodine concentration, Thin Solid Films, vol. 516, pp. 7155-7159, 2008.
[108]. J. B. Foresman, and A. Frisch, Exploring Chemistry with Electronic Structure Methods 2nd Edition, Gaussian, Inc., Pittsburgh, PA, 1996.
[109]. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, Quantum dots for live cells, in vivo imaging and diagnostics, Science, vol. 307, pp. 538-544, 2005.
[110]. F. Labat, P. Baranek, and C. Adamo, Structural and electronic properties of selected rutile and anatase TiO2 surfaces: An ab initio investigation, J. Chem. Theory Comput., vol. 4, pp. 341-352, 2008.