簡易檢索 / 詳目顯示

研究生: 楊雅筑
Yang, Ya-Chu
論文名稱: 透過合成無機鈣鈦礦CsPbBr3/CsPbI3菱形十二面體與立方體來探討其晶面光學效應
Existence of facet-dependent optical properties in cesium lead halides through the formation of CsPbBr3/CsPbI3 rhombic dodecahedra and nanocubes
指導教授: 黃暄益
Huang, Hsuan-Yi
口試委員: 陳益佳
Chen, I-Chia
陳方中
Chen, Fang-Chung
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 50
中文關鍵詞: 晶面光學效應無機鈣鈦礦
外文關鍵詞: facet-dependent optical properties, cesium lead halide
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們是第一位成功合成出具有形狀控制的無機鈣鈦礦CsPbBr3粒子。藉由改變界面活性劑的比例或者是合成溫度,能快速的合成出CsPbBr3立方體、菱形十二面體與八面體。由紫外光吸收光譜可以明顯看到三者的吸收位置不同,是因為三者所組成的晶面不同造成的差異。而可藉由控制菱形十二面體的大小改變吸收位置,進而利用Tauc plot推算出相對應的能隙,隨著粒子尺寸越大,能隙逐漸下降。CsPbI3立方體也可以直接合成。我們更進一步的利用陰離子交換法來探討光學晶面效應,170奈米的CsPbBr3菱形十二面體可藉由陰離子交換法轉換成CsPbI3菱形十二面體,而10奈米的CsPbI3立方體可轉換成相同大小的CsPbBr3立方體。比較CsPbBr3的菱形十二面體與立方體,不論是紫外吸收光譜或是螢光放射光譜,粒徑較大的170奈米菱形十二面體反而較粒徑超小的立方體藍位移,此項例子對於光學晶面效應提供了一個強而有力的證明。最後,我們將合成出的CsPbBr3菱形十二面體、立方體與期刊合成出的粒子做比較。將粒子尺寸大小與紫外光吸收位置作圖,會發現當具有{110}晶面的菱形十二面體與具有{100}晶面的立方體隨著粒徑尺寸越大,粒子的光吸收趨勢差異極大。相較於相同大小的菱形十二體與立方體,兩者的吸收光譜竟差距了70奈米。這除了證明了光學晶面效應的存在,也顯示藉由改變晶面也可調控LED的顏色。


    In this study, we are the first one to synthesize CsPbBr3 rhombic dodecahedra and octahedra. By tuning the ratio of surfactant or controlling the reaction temperature, we have demonstrated fast synthetic methods for the fabrication of CsPbBr3 crystals with various morphologies. We can see it is obvious that the absorption band depends on the crystal facets. We also can change the positon of absorption wavelength by tuning particle size, and a modified band diagram for CsPbBr3 can explain the observed optical properties of CsPbBr3. Furthermore, CsPbI3 particles can be made by anion exchange method for optical facet-dependent effect observation. Through the anion exchange method, 170 nm CsPbBr3 RD can lead to CsPbI3 RD, and 10 nm CsPbI3 cubes can change to CsPbBr3 cubes of the same size. Compared with CsPbBr3 rhombic dodecahedra and cubes, remarkably the much bigger RD are more blue-shifted than the ultrasmall cubes in light absorption and emission. This is one powerful demonstration of optical facet effects. Lastly, we compared our synthesized rhombic dodecahedra and cubes with reported cesium lead halide particles. Cubes with {100} crystal faces can produce a large shift in absorption position by slightly changing their particle size. Conversely, RD with {110} crystal faces require a large size variation to cause similar absorption shifts. The comparison also reveals ultralarge band separation of 70 nm for similar-sized CsPbBr3 rhombic dodecahedra and cubes. This phenomenon not only proves the optical facet effects, but also provides us a new way to tune the emission color of LEDs through crystal face control.

    論文摘要 I ABSTRACT II TABLE OF CONTENTS IV LIST OF FIGURES VI LIST OF SCHEMES XII LIST OF TABLES XIII 1. Introduction 1 1.1 Different morphologies and optical properties of cesium lead halide perovskites 1 1.2 Facet- and size-dependent optical properties of Cu2O nanocrystals 4 1.3 Facet-Dependent Electrical Conductivity Properties of Cu2O, Ag2O and PbS Nanocrystals 8 1.4 Density functional theory (DFT) calculations 12 1.5 CsPbBr3 Optical Facet Effect Research Summary 14 2. Experimental Section 15 2.1 Chemicals 15 2.2 Synthesis of Cesium Oleate Solution 15 2.3 Synthesis of CsPbBr3 Crystals with Various Shapes 16 2.4 Synthesis of Different Sizes of CsPbBr3 Rhombic Dodecahedra 18 2.5 Synthesis and Purification of CsPbI3 Nanocrystals 18 2.6 Preparation of Anion Exchange Solutions 19 2.7 Instrumentation 21 3. Results and Discussion 21 3.1 Characterization of CsPbBr3 Nanocrystals 21 3.2 Characterization of CsPbI3 Nanocrystals 32 3.3 Anion Exchange of CsPbBr3/CsPbI3 Crystals 35 4. Conclusion 43 5. References 44

    1. Wang, Q.; Zhang, X.; Jin, Z.; Zhang, J.; Gao, Z.; Li, Y.; Liu, S.-F. Energy-Down-Shift CsPbCl3:Mn Quantum Dots for Boosting the Efficiency and Stability of Perovskite Solar Cells. ACS Energy Lett. 2017, 2, 1479–1486.
    2. Zhang, X.; Lin, H.; Huang, H.; Reckmeier, C.; Zhang, Y.; Choy, W.-C. H.; Rogach, A.-L. Enhancing the Brightness of Cesium Lead Halide Perovskite Nanocrystal Based Green Light-Emitting Devices through the Interface Engineering with Perfluorinated Ionomer. Nano Lett. 2016, 16, 1415–1420.
    3. Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-Threshold Amplified Spontaneous Emission and Lasing from Colloidal Nanocrystals of Caesium Lead Halide Perovskites. Nat. Commun. 2015, 6, 8056.
    4. Ravi, V.-K.; Swarnkar, A.; Chakraborty, R.; Nag, A. Excellent Green but Less Impressive Blue Luminescence from CsPbBr3 Perovskite Nanocubes and Nanoplatelets. Nanotechnology 27, 2016, 325708.
    5. Koolyk, M.; Amgar, D.; Aharon, S.; Etgar, L. Kinetics of Cesium Lead Halide Perovskite Nanoparticle Growth; Focusing and De-focusing of Size Distribution. Nanoscale 2016, 8, 6403–6409.
    6. Tong, Y.; Bohn, B. J.; Bladt, E.; Wang, K.; Buschbaum, P. M.; Bals, S.; Urban, A. S.; Polavarapu, L.; Feldmann, J. From Precursor Powders-to-CsPbX3 Perovskite Nanowires: One-Pot Synthesis, Growth Mechanism and Oriented Self-Assemblies. Angew. Chem. Int. Ed. 2017, 56, 13887–13892.
    7. Liang, Z.; Zhao, S.; Xu, Z.; Qiao, B.; Song, P.; Gao, D.; Xu, X. Shape-Controlled Synthesis of All-Inorganic CsPbBr3 Perovskite Nanocrystals with Bright Blue Emission. ACS Appl. Mater. Interfaces 2016, 8, 28824–28830.
    8. Chen, M.; Zou, Y.; Wu, L.; Pan, Q.; Yang, D.; Hu, H.; Tan, Y.; Zhong, Q.; Xu, Y.; Liu, H.; Sun, B.; Zhang, Q. Solvothermal Synthesis of High-Quality All-Inorganic Cesium Lead Halide Perovskite Nanocrystals: From Nanocube to Ultrathin Nanowire. Adv. Funct. Mater. 2017, 27, 1701121.
    9. Ke, W.-H.; Hsia, C.-F.; Chen, Y.-J.; Huang, M. H. Synthesis of Ultrasmall Cu2O Nanocubes and Octahedra with Tunable Sizes for Facet-Dependent Optical Property Examination. Small 2016, 12, 3530–3534.
    10. Yang, K.-H.; Hsu, S.-C.; Huang, M. H. Facet-Dependent Optical and Photothermal Properties of Au@Ag–Cu2O Core–Shell Nanocrystals. Chem. Mater. 2016, 28, 5140–5146.
    11. Wang, H.-J.; Yang, K.-H.; Hsu, S.-C.; Huang, M. H. Photothermal Effects from Au–Cu2O Core–Shell Nanocubes, Octahedra, and Nanobars with Broad Near-Infrared Absorption Tunability. Nanoscale 2016, 8, 965–972.
    12. Rej, S.; Wang, H.-J.; Huang, M.-X.; Hsu, S.-C.; Tan, C.-S.; Lin, F.-C.; Huang, J.-S.; Huang, M. H. Facet-Dependent Optical Properties of Pd–Cu2O Core–Shell Nanocubes and Octahedra. Nanoscale 2015, 7, 11135–11141.
    13. Huang, M. H.; Rej, S.; Chiu. C.-Y. Facet-Dependent Optical Properties Revealed through Investigation of Polyhedral Au–Cu2O and Bimetallic Core-Shell Nanocrystals. Small 2015, 11, 2716–2726.
    14. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Cu2O Crystals. Nano Lett. 2015, 15, 2155–2160.
    15. Tan, C.-S.; Chen, Y.-J.; Hsia, C.-F.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Silver Oxide Crystals. Chem. Asian J. 2017, 12, 293–297.
    16. Tan, C.-S.; Chen, H.-S.; Chiu, C.-Y.; Wu, S.-C.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of PbS Nanocrystals. Chem. Mater. 2016, 28, 1574−1580.
    17. Tan, C.-S.; Huang, M. H. Density Functional Theory Calculations Revealing Metal-like Band Structures for Ultrathin Ge {111} and {211} Surface Layers. Chem. Asian J. 2018, 13, 1972–1976.
    18. Yuan, G.-Z.; Hsia, C.-F.; Lin, Z.-W.; Chiang, C.; Chiang, Y.-W.; Huang, M. H. Highly Facet-Dependent Photocatalytic Properties of Cu2O Crystals Established through the Formation of Au-Decorated Cu2O Heterostructures. Chem.–Eur. J. 2016, 22, 12548–12556.
    19. Hsieh, M.-S.; Su, H.-J.; Hsieh, P.-L.; Chiang, Y.-W.; Huang, M. H. Synthesis of Ag3PO4 Crystals with Tunable Shapes for Facet-Dependent Optical Property, Photocatalytic Activity, and Electrical Conductivity Examinations. ACS Appl. Mater. Interfaces 2017, 9, 39086–39093.
    20. Wu, S.-C.; Tan, C.-S.; Huang, M. H. Strong Facet Effects on Interfacial Charge Transfer Revealed through the Examination of Photocatalytic Activities of Various Cu2O–ZnO Heterostructures. Adv. Funct. Mater. 2017, 27, 1604635.
    21. Chen, Y.-J.; Chiang, Y.-W.; Huang, M. H. Synthesis of Diverse Ag2O Crystals and Their Facet-Dependent Photocatalytic Activity Examination. ACS Appl. Mater. Interfaces 2016, 8, 19672–19679.
    22. Huang, J.-Y.; Hsieh, P.-L.; Naresh, G.; Tsai, H.-Y.; Huang, M. H. Photocatalytic Activity Suppression of CdS Nanoparticle-Decorated Cu2O Octahedra and Rhombic Dodecahedra. J. Phys. Chem. C 2018, 122, 12944–12950.
    23. Huang, M. H.; Naresh, G.; Chen, H.-S. Facet-Dependent Electrical, Photocatalytic, and Optical Properties of Semiconductor Crystals and Their Implications for Applications. ACS Appl. Mater. Interfaces 2018, 10, 4–15.
    24. Huang, M. H. Facet-Dependent Optical Properties of Semiconductor Nanocrystals. Small 2019, 15, 1804726.
    25. Huang, J.-Y.; Madasu, M.; Huang, M. H. Modified Semiconductor Band Diagrams Constructed from Optical Characterization of Size-Tunable Cu2O Cubes, Octahedra, and Rhombic Dodecahedra. J. Phys. Chem. C 2018, 122, 13027–13033.
    26. Xuan, T.; Lou, S.; Huang, J.; Cao, L.; Yang, X.; Li, H.; Wang, J. Monodisperse and Brightly Luminescent CsPbBr3/Cs4PbBr6 Perovskite Composite Nanocrystals. Nanoscale 2018, 10, 9840–9844
    27. Akkerman, Q. A.; Abdelhady, A. L.; Manna, L. Zero-Dimensional Cesium Lead Halides: History, Properties, and Challenges. J. Phys. Chem. Lett. 2018, 9, 2326−2337
    28. Zhang, Y.; Sinatra, L.; Alarousu, E.; Yin, J.; El-Zohry, A. M.; Bakr, O. M.; Mohammed, O. F. Ligand-Free Nanocrystals of Highly Emissive Cs4PbBr6 Perovskite. J. Phys. Chem. C 2018, 122, 6493−6498
    29. Zheng, B.; Wang, X.; Liu, C.; Tan, K.; Xie, Z.; Zheng, L. High-Efficiently Visible Light-Responsive Photocatalysts: Ag3PO4 Tetrahedral Microcrystals with Exposed {111} Facets of High Surface Energy. J. Mater. Chem. A 2013, 1, 12635–12640.
    30. Nguyen, T. P.; Ozturk, A.; Park, J.; Sohn, W.; Lee, T. H.; Jang, H. W.; Kim, S. Y. Facile Synthesis of CsPbBr3/PbSe Composite Clusters. Sci. Technol. Adv. Mater. 2018, 19, 10–17.
    31. Brennan, M. C.; Herr, J. E; Nguyen-Beck, T. S; Zinna, J.; Draguta, S.; Rouvimov, S.; Parkhill, J.; Kuno, M. Origin of the Size-Dependent Stokes Shift in CsPbBr3 Perovskite Nanocrystals. J. Am. Chem. Soc. 2017, 139, 12201−12208.
    32. Hoffman, J. B.; Schleper, A. L.; Kamat, P. V. Transformation of Sintered CsPbBr3 Nanocrystals to Cubic CsPbI3 and Gradient CsPbBrxI3−x through Halide Exchange. J. Am. Chem. Soc. 2016, 138, 8603–8611.
    33. Li, M.; Zhang, X.; Lua, S.; Yang, P. Phase Transformation, Morphology Control, and Luminescence Evolution of Cesium Lead Halide Nanocrystals in the Anion Exchange Process. RSC Adv. 2016, 6, 103382.
    34. Tong, Y.; Bohn, B. J.; Bladt, E.; Wang, K.; Buschbaum, P. M., Bals, S.; Urban, A. S.; Polavarapu, L.; Feldmann, J. From Precursor Powders to CsPbX3 Perovskite Nanowires: One-Pot Synthesis, Growth Mechanism, and Oriented Self-Assembly. Angew. Chem. Int. Ed. 2017, 56, 13887–13892.
    35. Wang, H.-C.; Lin, S.-Y.; Tang, A.-C.; Singh, B. P.; Tong, H.-C.; Chen, C.-Y.; Lee, Y.-C.; Tsai, T.-L.; Liu, R.-S. Mesoporous Silica Particles Integrated with All Inorganic CsPbBr3 Perovskite Quantum-Dot Nanocomposites (MP-PQDs) with High Stability and Wide Color Gamut Used for Backlight Display. Angew. Chem. Int. Ed. 2016, 55, 7924–7929.

    QR CODE