研究生: |
余佳銘 Chia-Ming Yu |
---|---|
論文名稱: |
不同加鋅處理條件之敏化304不□鋼在模擬沸水式反應器環境中的電化學特性研究 Electrochemical Behavior of Type 304 Stainless Steels Treated with ZnO in Simulated Boiling Water Reactor Environments |
指導教授: |
蔡春鴻
Chuen-Horng Tsai 葉宗洸 Tsung-Kuang Yeh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 143 |
中文關鍵詞: | 沸水式反應器 、沿晶應力腐蝕裂縫 、加氫水化學技術 、氧化鋅添加技術 、電化學腐蝕 、動態電位極化掃描 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
核能電廠中隸屬壓力邊界(Pressure Boundary)的結構組件依據其設計基準應具備四十年的使用年限,但自1960年代初期起,沸水式反應器(Boiling Water Reactor, BWR)壓力槽外的再循環管路便開始出現應力腐蝕龜裂(Stress Corrosion Cracking, SCC)的問題。而1974年起,全世界有相當多數的沸水式反應器壓力槽內部組件也陸續的發現有類似的應力腐蝕龜裂問題,這些龜裂類型主要可區分為沿晶應力腐蝕龜裂(Intergranular Stress Corrosion Cracking, IGSCC)與輻射促進應力腐蝕龜裂(Irradiation-assisted Stress Corrosion Cracking, IASCC)。然而近二十年來,為減緩沸水式反應器不□鋼組件的龜裂劣化問題,已有許多方式被提出討論。
加氫水化學 (Hydrogen Water Chemistry, HWC) 技術是在飼水中注氫來降低基材金屬的電化學腐蝕電位 (Electrochemical Corrosion Potential, ECP),已證實能有效防制IGSCC與IASCC的發生。然而,HWC技術在高注氫量下,會帶來升高管路輻射劑量的副作用,於是增益或取代HWC的被覆技術接著發展出來,其中以催化性被覆及抑制性被覆最為普遍。前者是利用貴重金屬催化氫的氧化反應,以促進HWC的效益;抑制性被覆則是在組件表面形成一阻絕被覆,以降低金屬表面氧化還原反應的速率,進而降低不□鋼組件的腐蝕速率。
另外,在取代HWC的技術尚未成熟之前,全球的核電廠為了解決HWC技術造成的輻射劑量大增問題,近年來在核能業界已逐漸的發展出接近成熟的加鋅處理技術來改善輻射劑量大增的問題,並廣泛的應用在核電廠之中。在此期間,許多核能界的學者更加認為加鋅處理技術除了可以降低輻射劑量外,應該還有抑制SCC的效用存在,然而尚無足夠的數據去明確地證實此項效應的存在。
所以本篇論文的目的,將模擬BWR爐心中溶氧與溶氫的高溫純水環境,利用高溫電化學分析以及表面分析去比較304不□鋼在經由不同條件的加鋅處理過後的防蝕效益。
由本實驗結果顯示,在低濃度加鋅處理下,幾乎不會有Zn離子交換的現象發生,必須要在高濃度加鋅處理下(1 ppm ZnO),才會有明顯的Zn離子置換發生。然而在高溫電化學分析方面,則發現無論在高濃度或低濃度加鋅處理下,均無防蝕效益存在。
參考文獻
1. 邱太銘, “再生能源,”國立清華大學工科系授課講義
2. 0. M. Shindo et al, “Effect of minor elements on irradiation assisted stress corrosion cracking of model austenitic stainless steels,” Journal of Nuclear Materials 233-237(1996)1393-1396.
3. M. A. Al-Anezi, G. S. Frankel and A. K. Agrawal, ”Susceptibility of Conventional Pressure Vessel Steel to Hydrogen-Induced Cracking and Stress-Oriented Hydrogen-Induced Cracking in Hydrogen Sulfide-Containing Diglycolamine Solutions,” Corrosion . Vol.55 No.11 pp.1101-1109.
4. S. Arsene, J. B. Bai, P. Bompard, “Hydride Embrittlement and Irradiation Effects on the Hoop Mechanical Properties of Pressurized Water Reactor (PWR) and Boiling-Water Reactor (BWR) ZIRCALOY Cladding Tubes: Part I. Hydride Embrittlement in Stress-Relieved, Annealed, and Recrystallized ZIRCALOYs at 20 °C and 300 °C,” Metallurgical and Materials Transactions A, Vol. 34, No 3, 1 March 2003, pp. 553-566.
5. D. A. Jones, “Principles and Prevention of Corrosion 2nded, ” Prentice Hall, Upper Saddle River, NJ(1996).
6. P. L. Andresen, “Factors Governing The Predictoin of LWR Component SCC Behavior from Laboratory Data” ,CORROSION/99, paper no. 145, Houston, TX, NACE International, (1999).
7. 鮮棋振,“金屬腐蝕膜特性探討,”徐氏基金會出版
8. H. H. Uhlig, R. W. Revie, “Corrosion and Corrosion Control, 3rded. ”
9. T. M. Angeliu, P. L. Andresen, F. P. Ford,“Applying slip-oxidationtothe SCC of austenitic materials in BWR/PWR environments. ” CORROSION 98, NACE International, 1998, Paper No. 262.
10. Materials Science and Engineering-An Introduction, 5th Edition W.D. Callister, Jr., John Wiley Sons, Inc., 1999.
11. Y. Ueda, K. Nakacho, T. Shimizu, “Improvement of Residual Stresses of Circumferential Joint of Pipe by Heat-Sink Welding,” Journal of Pressure Vessel Technology (Transactions of the ASME). Vol. 108, no. 1, pp. 14-23. Nov. 1986.
12. N. R. Hughes, T. P. Diaz, V. V. Pestanas, “Qualification of Induction Heating Stress Improvement for Mitigation of Stress Corrosion Cracking, ” Journal of Pressure Vessel Technology (Transactions of the ASME). Vol. 104, no. 4, pp. 344-350. Nov. 1982.
13. M. G. Fontana, “Corrosion Engineering, 3rd ed.,” McGraw-Hill International.
14. D. D. Macdonald, “Viability of Hydrogen Water Chemistry for Protecting In-Vessel Components of Boiling Water Reactors,” Corrosion, Vol.48, No.3, p.194(1992).
15. J. B. Lee, “Electrochemical Approach to the Corrosion Problems of Several Iron-Nickel-Chromium Alloys in High Temperature High Pressure Water,” Ph.D. Thesis, Department of Metallurgical Engineering, The Ohio State University, U.S.A., 1978.
16. Electric Power Research Institute, “BWR Water Chemistry Guideline, 1996 Revision,” EPRI TR-103315-R1, 1996.
17. P. L. Andresen, F. P. Ford, “ Life Prediction by Mechanistic Modeling and System Monitoring of Environmental Cracking of Iron Alloys in Aqueous Systems,” Materials Science and Engineering, A103, p.167, (1988).
18. B. Stellwag, M. Lasch, and U. Staudt, 1998 JAIF Conference p186-193
19. R. L. Cowan, “The Mitigation of IGSCC of BWR Internals with Hydrogen Water Chemistry,” Water Chemistry of Nuclear Reactor Systems 7, BNES, Bournemouth, England, Oct. 13-17, 1996, p. 196.
20. Y. J. Kim and P. L. Andresen, “Effect of Noble Metal Addition on Electrochemical Polarization Behavior of Hydrogen Oxidation and Oxygen Reduction on Type 304 Stainless Steel in High-Temperature Water,” CORROSION–MAY 1999, Vol. 55, No. 5, p.456-461.
21. S. Hettiarachchi, R. J. Law, T. P. DiaZ, R. L. Cowan, “The First In-Plant Demonstration of Noble Metal Chemical Addition Technology for IGSCC Mitigation of BWR Internal,” 8th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, August 1014, p.535(1997).
22. C. S. Kumai, and T. M. Devine, “Oxidation of Iron in 2880C, Oxygen-Containing Water,” Corrosion. Vol. 61, No. 3.
23. B. Stellwag, “The Mechanism of Oxide Film Formation on Austenitic Stainless Steels in High Temperature Water,” Corrosion Science, Vol. 40, No. 2, p. 337 (1998).
24. Y. Asakura et al, Corrosion NACE, 1989, 45, 119-124.
25. R. Winkler, H. Lehmann, VGB Kraftwerkstechnik, 1985, 65,421426.
26. Y. J. Kim, “Analysis of Oxide Film Formed on Type 304 Stainless Steel in 288°C Water Containing Oxygen, Hydrogen, and Hydrogen Peroxide”, Corrosion Vol. 55, No.1, January 1999.
27. Y. J. Kim, “Effect of Water Chemistry on Corrosion Behavior of 304 SS in 288°C Water,” International Water Chemistry Conference, San Francisco, October 2004.
28. Y. J. Kim, “Characterization of the Oxide Film Formed on Type 316 Stainless Steel in 288°C Water in Cyclic Normal and Hydrogen Water Chemistries,”Corrosion Vol.51, No.11, pp.849-860(1995).
29. S. Uchida et al., “Effects of Hydrogen Peroxide on Corrosion of SS in High Temperature Water,” Water Chemistry of Nuclear Reactor Systems, Oct. (2004).
30. S. Uchida et al., “Effects of Hydrogen Peroxide on Corrosion of Stainless Steel, (V) Characterization of Oxide Film with Multilateral Surface Analyses,” Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol.43, No.8, p.884-895(2006).
31. S. Uchida et al., ‘‘Dissolution of oxide.lm onstainless steel surface in high temperature H2O2water,’’ Proc. Symp. Water Chemistry and Corrosion of Nuclear Power Plants in Asia, 2005, Gyeonhju, Korea, Oct. 11–13, 2005, Korean Atomic Energy Research Institute, 145 (2005).
32. Y. J. Kim, “In-Situ Electrochemical Impedance Measurement of Oxide Film Formed on Type 304 Stainless Steel in High-Temperature Water ,” Corrosion Vol. 56, No.4, April 2000.
33. C. S. Kumai, T. M. Devine, “Oxidation of Iron in 288°C, Oxygen-Containing Water,” Corrosion Vol. 61, No. 3, pp.201-218, (2005).
34. W. J. Marble, R. L. Cowan, C. J. Wood, “Control of Cobalt-60 Deposition,” Water Chemistry of Nuclear Reactor System 4, BNES, October, 1986.
35. T. Baba et al., Proceedings JAIF Int`I Conf. on Water Chemistry in
Nuclear Power Plants, (1998).
36. W. J. Marble, “New Developments in BWR Radiation Buildup,”
EPRI Seminar on BWR Radiation Buildup, Electric Power Research Institute, Palo Alto, California, December 1983.
37. L. W. Niedrach,W. H. Stoddard, “Effect of Zinc on Corrosion that Form on Stainless Steel,”Corrosion,Vol.42, No.9, pp.546-549, (1986).
38. R. L. Cowan et al, “Effects of hydrogen water chemistry on radiation field buildup in BWRs,” Nuclear Engineering and Design 166(1996)31-36.
39. H. Kawamura, H. Hirano et al. ,“Inhibitory Effect of Zinc Addition to High-Temperature Hydrogenated Water on Mill-Annealed and Prefilmed Alloy 600,” Corrosion-Vol.56, No.6,pp.623-636, (2000).
40. S. E. Ziemniak, M. Hanson ,“Zinc Treatment Effects on Corrosion
Behavior of 304 Stainless Steel in High Temperature, Hydrogenated Water,” Corrosion Science 48(2006)2525-2546.
41. S. E. Ziemniak, M. Hanson ,“Zinc Treatment Effects on Corrosion
Behavior of Alloy 600 in High Temperature, Hydrogenated Water,” Corrosion Science 48(2006) 3330–3348
42. B. Beverskog, “The Role of Zinc in LWRs,” Water Chemistry of Nuclear Reactor Systems, Oct. (2004).
43. 梁仲賢,第四屆海峽兩岸材料腐蝕與防護研討會,“BWR環境下鋅、鈷離子對304不□鋼表面氧化膜之影響研究”,2004年10月
44. K. Ishigure, T. Kimura, E. Kadoi, “Effect of Pre-conditioning with Zinc on the Surface Oxide Layer and Anodic Polarization Begavior of Stainless Steel,” Symposium on water chemistry and corrosion on nuclear power plant in Asia 2005.
45. W. Y. Maeng, Y. S. Cho, “Effect of Dissolved Zn on the PWSCC of Alloy 600 in High Temperature Water,” Symposium on water chemistry and corrosion on nuclear power plant in Asia 2005
46. T. M. Angeliu, P. L. Andresen, “Effect of Zinc Additions on
Rupture Strain and Repassivation Kinetics of Iron-Based Alloys in 288℃ Water,” Corrosion ,Vol.52, No.1 ,pp.28-35, (1996) .
47. P. L. Andresen, J. A. Wilson, K. S. Ahluwalia , “Use of Primary
Water Chemistry in PWRs to Mitigate PWSCC of Ni-Base Alloys,”
International Conference on Water Chemistry of Nuclear Reactor Systems 2006.
48. M. M. Morra, P. L. Andresen, M. Pollick, “The Effect of Zn and
Low Energy Grain Boundaries on SCC of Stainless Steels,” ICG-EAC 2004 Yumebutai, Japan, April 20, 2004.
49. R. L. Cowan, E. Kiss, “Optimizing BWR Water Chemistry,” Procding of 6th International Symposium on Environmental Degradation of Material in Nuclear Power System, San Diego, California, August 1993..
50. H. Hosokawa, M. Nagase, “Investigation of Cobalt Deposition Behavior with Zinc Injection on Stainless Steel under BWR Conditions,” Journal of Nuclear Science and Technology, Vol.41, No.6, p.682-689(2004).
51. R. E. Reed-Hill, R. Abbaschian, “Physical Metallurgy Principles ”third edition .
52. 汪建民,“材料分析,”中國材料科學學會
53. M. Chen , Z. L. Pei et al. , “Surface characterization of transparent conductive oxide Al-doped ZnO films ,” Journal of Crystal Growth 220 (2000) 254~262.
54. M. N. Islam , T. B. Ghosh et al. , “XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films ,” Thin Solid Films 280 (1996) 20-25
55. 王佰揚,“不同抑制性被覆條件之敏化304不□鋼在高溫純水環
境中的電化學行為研究,”國立清華大學碩士論文.
56. 林秉漢,“氧化鋯抑制性被覆及氧化鋅處理之敏化304不□鋼在高溫純水環境中的電化學行為研究,”國立清華大學碩士論文.
57. 簡源進,“氧化鋯被覆與不同304不□鋼氧化膜對於溶氫與溶氧在模擬沸水式反應器環境中的電化學特性影響研究”國立清華大學碩士論文.