簡易檢索 / 詳目顯示

研究生: 魏惠嫻
論文名稱: 鈀金屬奈米粒子與鈀銀雙金屬奈米粒子於二氧化碳膨脹液體之合成與催化反應
Synthesis and catalyzed reactions of Pd and PdAg nanoparticles in CO2-expanded liquids
指導教授: 談駿嵩
口試委員: 莊顯成
陳郁文
談駿嵩
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 84
中文關鍵詞: 鈀奈米粒子鈀銀奈米粒子二氧化碳膨脹液體苯乙烯氫化反應間氯硝基苯氫化反應
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以硬脂酸與異硬脂酸合成溶於有機溶劑中之金屬前驅物,以氫氣還原後,即可得分散於有機溶劑中之奈米級金屬粒子。鈀金屬奈米粒子的型態受金屬保護基結構的影響,以直鏈結構之硬脂酸做為保護基,可得三角形的奈米粒子,以多支鏈的異硬脂酸為保護基,奈米粒子則呈現長條狀。此兩種金屬前驅物於二氧化碳膨脹溶液(CO2-expanded liquid, CXL)中進行還原,皆可得球型的鈀金屬奈米粒子,同時可得到較小得鈀金屬奈米粒子粒徑與較窄的粒徑分布。
    鈀金屬奈米粒子之活性受到奈米粒子型態的影響,球型奈米粒子之活性最好,其次是三角形奈米粒子,活性最差的是長條形奈米粒子。將此法合成之鈀金屬奈米粒子應用於氫化反應時,可將還原與氫化程序結合為單一步驟進行反應,其活性優於商用觸媒Pd/C與商用金屬前驅物(醋酸鈀與乙醯丙酮鈀)。
    於二氧化碳膨脹液體中,亦可合成粒徑約為 3 nm之鈀銀雙金屬奈米粒子,這些粒子具有相當優良的分散性。經由鑑定證實鈀銀雙金屬奈米粒子結構為合金型奈米粒子且其組成具有可調整性。鈀銀雙金屬奈米粒子之粒徑與分散性與氫氣添加量及還原溫度有關,最佳的合成條件為還原氣體氫氣與二氧化碳之壓力分別為200 psi與600 psi,以及40 oC下還原60 min,可得粒徑為2.9 ± 0.7 nm之鈀銀雙金屬奈米粒子。
    以鈀銀雙金屬奈米粒子進行Phenylacetylene氫化反應時,加入二氧化碳可提高Styrene選擇率,當以Pd0.3Ag0.7為觸媒時,二氧化碳添加量為20%,於40 oC下反應30 min,轉化率可達100%,Styrene選擇率為91.8%。


    摘 要 i 目 錄 iv 表目錄 vii 圖目錄 viii 第一章 緒 論 1 第二章 文獻回顧 3 2.1 奈米粒子之簡介與應用 3 2.2 金屬奈米粒子之製備方法 5 2.2.1鹽類還原法 10 2.2.2 多元醇還原法 14 2.2.3 溶劑熱法 18 2.3 金屬奈米粒子之形成機制 20 2.4 高壓二氧化碳應用於奈米粒子之合成 23 2.5 二氧化碳膨脹液體之應用 25 第三章 實驗方法 29 3.1 實驗藥品 29 3.2 分析儀器 30 3.2.1 穿透式電子顯微鏡(TEM) 30 3.2.2 X-光粉末繞射儀(XRD) 30 3.2.3 X射線能量散佈分析儀(EDX) 31 3.2.4 感應耦合電漿離子源元素組成分析(ICP-Mass) 32 3.2.5 元素分析儀 (EA) 32 3.2.6 紫外線/可見光分光光譜儀(UV/Vis) 32 3.2.7 熱重分析儀(TGA) 33 3.2.8 熱示差掃瞄卡量計(DSC) 33 3.2.9 全反射傅立葉轉換紅外線光譜儀(ATR-FTIR) 34 3.2.10 氣相層析儀(GC-FID) 34 3.3實驗裝置與實驗步驟 36 3.3.1製備異硬脂酸金屬鈀鹽之實驗步驟 36 3.3.2製備異硬脂酸銀鹽之實驗步驟 36 3.3.3 製備雙金屬奈米粒子之裝置圖與實驗步驟 36 3.3.4 以鈀奈米粒子進行Styrene氫化反應之實驗步驟 37 3.3.5 以鈀奈米粒子進行m-CNB氫化反應之實驗步驟 37 3.3.5 以鈀銀雙奈米粒子進行Phenylacetylene氫化反應之實驗步驟 38 第四章 結果與討論 40 4.1 金屬前驅物性質之性質鑑定 40 4.1.1全反射傅立葉轉換紅外線光譜儀(ATR-FTIR) 40 4.1.2 熱分析鑑定(TGA、DSC) 43 4.1.3 前驅物組成鑑定(EA, ICP) 45 4.2 鈀金屬奈米粒子 47 4.2.1 鈀金屬奈米粒子合成 47 4.2.2鈀金屬奈米粒子應用於m-CNB氫化反應 54 4.2.3鈀金屬奈米粒子應用於Styrene氫化反應 59 4.3鈀銀雙金屬奈米粒子 61 4.3.1鈀銀雙金屬奈米粒子合成與鑑定 61 4.3.1.1粒子成分效應 61 4.3.1.2二氧化碳壓力效應 68 4.3.1.3氫氣壓力效應 70 4.3.1.4 溫度效應 72 4.3.2鈀銀雙金屬奈米粒子應用於Phenylacetylene氫化反應 74 第五章 結論 77 參考文獻 79

    [1] Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of Thiol-Derivatized Gold Nanoparticles in a 2-Phase Liquid-Liquid System. J. Chem. Soc., Chem. Commun. 2005, 7, 801-802.
    [2] Sarathy, K. V.; Raina, G.; Yadav, R. T.; Kulkarni, G. U.; Rao, C. N. R. Thiol-Derivatized Nanocrystalline Arrays of Gold, Silver, and Platinum. J. Phys. Chem. B 1997, 48, 9876-9880.
    [3] Chen, S.H.; Yao, H.; Kimura, K. Reversible Transference of Au Nanoparticles across the Water and Toluene Interface: A Langmuir Type Adsorption Mechanism. Langmuir 2001, 17, 733-739.
    [4] Zhang, S.S.; Leem, G.; Srisombat, L.O.; Lee, T.R. Rationally Designed Ligands that Inhibit the Aggregation of Large Gold Nanoparticles in Solution. J. Am. Chem. Soc. 2008, 130, 113-120.
    [5] Zhou, J.F.; Ralston, J.; Sedev, R.; Beattie, D.A. Functionalized Gold Nanoparticles: Synthesis, Structure and Colloid Stability. J. Colloid Interface Sci. 2009, 331, 251-262.
    [6] Yang, J.; Sargent, E.H.; Kelley, S.O.; Ying, J.Y. A general Phase-Transfer Protocol for Metal Ions and Its Application in Nanocrystal Synthesis. Nat. Mater. 2010, 9, 179-179
    [7] Yin, H.F.; Zhen, M.; Chi, M.; Dai, S. Heterostructured Catalysts Prepared by Dispersing Au@Fe2O3 Core-shell Structures on Supports and Their Performance in CO Oxidation. Catal. Today 2011, 160, 87-95.
    [8] 馬振基,奈米材料科技原理與應用,全華科技圖書臺北,2005。
    [9] 賴英煌,光催化法製備金奈米粒子的研究,碩士論文,東海大學,2010。
    [10] Rao, C. N. R.; Kulkarni, G. U.; Thomas, P. J.; Edwards, P. P. Size-Dependent Chemistry: Properties of Nanocrystals. Chem. Eur. J. 2002, 8, 28-35.
    [11] 倪星元、沈軍、張志華,纳米材料的理化特性与应用,化學工業出版社,北京, 2006。
    [12] Schimpf, S.; Lucas, M.; Mohr, C.; Rodemerck, U.; Brückner, A.; Radnik, J.; Hofmeister, H.; Claus, P. Supported Gold Nanoparticles: in-Depth Catalyst Characterization and Application in Hydrogenation and Oxidation Reactions. Catal. Today 2002, 72, 63-78.
    [13] Manikam, V.R.; Cheong, K.Y.; Razak, K.A.; Chemical Reduction Methods for Synthesizing Ag and Al Nanoparticles and Their Respective Nanoalloys, Mater. Sci. Eng. B 2011, 176, 187-203.
    [14] Yon, J.M.; Jamie, R.L. Manufactured Nanoparticles: An Overview of Their Cemistry, Interactions and Potential Environmental Implications. Sci. Total Environ. 2008, 400, 396-414.
    [15] 林琬蓉,FePt合金粒子之製備與性質研究,碩士論文,國立成功大學,2007。
    [16] Schmid, G. Clusters and Colloids :From Theory to Applications, VCH, New York, NY, 1994.
    [17] Toshima, N.; Yonezawa, T. Bimetallic Nanoparticles-Novel Materials for Chemical and Physical Applications. New J. Chem. 1998, 22, 1179-1201.
    [18] Kanninen, P.; Johans, C.; Merta, J.; Kontturi, K. Influence of Ligand Structure on the Stability and Oxidation of Copper Nanoparticles. J. Colloid Interface Sci. 2008, 318, 88-95.
    [19] Liu, J.C.; Ruffini, N.; Pollot, P.; Llopis-Mestre, V.; Dilek, C.; Eckert, C.A.; Liotta, C.L.; Roberts, C.B. More Benign Synthesis of Palladium Nanoparticles in Dimethyl Sulfoxide and Their Extraction into an Organic Phase. Ind. Eng. Chem. Res. 2010, 49, 8174-8179.
    [20] Fievet, F.; Lagier, J. P.; Figlarz, M. Preparing Monodisperse Metal Powders in Micrometer Sizes by the Polyol Process. MRS, Bullintin, 1989.
    [21] Jeyadevan, B.; Shinoda, K.; Justin, R. J.; Matsumoto, T.; Sato, K.; Takahashi, H.; Sato, Y.; Tohji, K. Polyol Process for Fe-based Hard(fct-FePt) and Soft(FeCo) Magnetic Nanoparticles IEEE Trans. Magn. 2006, 42, 3030-3035.
    [22] Xiong, Y.J.; Cai, H.G.; Wiley, B.J.; Wang, J.G.; Kim, M.J.; Xia, Y.N. Synthesis and Mechanistic Study of Palladium Nanobars and Nanorods. J. Am. Chem. Soc. 2007, 129, 3665-3675.
    [23] Ai, F.R.; Yaon, A.H.; Huang, W.H.; Wang, D.P.; Zhang, X. Synthesis of PVP-Protected NiPd Nanoalloys by Modified Polyol Process and Their Magnetic Properties. Physica E 2010, 42, 1281-1286.
    [24] Wang, W.H., Cao, G.G., Synthesis and Structural Investigation of Pd/Ag Bimetallic Nanoparticles Prepared by the Solvothermal method, J. Nanoparticle Res. 2007, 9, 1153-1161.
    [25] Wang, W.H.; Zhao, B.; Li, P.; Tan, X.J. Fabrication and Characterization of Pd/Ag Alloy Hollow Spheres by the Solvothermal Method. J. Nanoparticle Res. 2008, 10, 543-548.
    [26] Jang, J.S.; Joshi, U.A.; Lee, J.S. Solvothermal Synthesis of CdS Nanowires for Photocatalytic Hydrogen and Electricity Production. J. Phys. Chem. C 2007, 111, 13280-13287.
    [27] Yang, Y.; Matsubara, S.; Xiong, L.M.; Hayakawa, T.; Nogami, M. Solvothermal Synthesis of Multiple Shapes of Silver Nanoparticles and Their SERS Properties. J. Phys. Chem. C 2007, 111, 9095-9104.
    [28] Galletti, A.M.R.; Antonetti, C.; Venezia, A.M.; Giambastiani, G. An Easy Microwave-Assisted Process for the Synthesis of Nanostructured Palladium Catalysts and Their Use in the Selective Hydrogenation of Cinnamaldehyde. Appl. Catal., A 2010, 386, 124-131.
    [29] Athilakshmi, J.; Ramanathan, S.; Chand, D. K. Facile Synthesis of Palladium Nanoclusters and Their Catalytic Activity in Sonogashira Coupling Reactions. Tetrahedron Lett. 2008, 49, 5286-5288.
    [30] Murray, B.; Kagan, C. R.; Bawendi, M. G. Synthesis and Characterization of Monodisperse Nanocrystals and Close-packed Nanocrystals Assembliesc. Annu. Rev. Mater. Sci. 2000, 30, 545-610.
    [31] Cubillas, P.; Anderson, M.W. Zeolites and Catalysis: Synthesis, Reactions and Applications, John Wiley & Sons Inc, Manchester, 2010.
    [32] Wang, D.H.; Li, Y.D. Bimetallic Nanocrystals: Liquid-Phase Synthesis and Catalytic Applications. Adv. Mater. 2011, 23, 1044-1060.
    [33] Chung, Y.M.; Rhee, H.K. Dendrimer-Templated Ag–Pd Bimetallic Nanoparticles. J. Colloid Interface Sci., 2004, 271, 151-724.
    [34] Shah, P. S.; Husain, S.; Johnston, K. P.; Korgel, B. A. Role of Steric Stabilization on the Arrested Growth of Silver Nanocrystals in Supercritical Carbon Dioxide. J. Phys. Chem. B 2002, 106, 12178-12185.
    [35] Johnston, K. P.; Harrison, K. L.; Clarke, M. J.; Howdle, S. M.;Heitz, M. P.; Bright, F. V.; Carlier, C.; Randolph, T. W. Water-in-Carbon Dioxide Microemulsions: An Environment for Hydrophiles Including Proteins. Science 1996, 271, 624-626.
    [36] Da Rocha, S. R. P.; Dickson, J.; Cho, D.; Rossky, P. J.; Johnston, K. P. Stubby Surfactants for Stabilization of Water and CO2 Emulsions:  Trisiloxanes. Langmuir 2003, 19, 3114-3020.
    [37] McLeod, M. C.; McHenry, R. S.; Beckman, E. J.; Roberts, C. B. Synthesis and Stabilization of Silver Metallic Nanoparticles and Premetallic Intermediates in Perfluoropolyether/CO2 Reverse Micelle Systems. J. Phys. Chem. B 2003, 107, 2693-2700.
    [38] Ji, M.; Chen, X.; Wai, C. M.; Fulton, J. L. Investigation of Nonionic Surfactant Dynol-604 Based Reverse Microemulsions Formed in Supercritical Carbon Dioxide. J. Am. Chem. Soc. 1999, 121, 2631-2632.
    [39] Liu, J.; Raveendran, P.; Shervani, Z.; Ikushima, Y.; Hakuta, Y. Synthesis of Ag and AgI Quantum Dots in AOT-Stabilized Water-in-CO2 Microemulsions. Chem Eur. J. 2005, 11, 1854-1860.
    [40] Liu, J.; Han, B.; Li, G.; Zhang, X.; He, J.; Liu, Z. Investigation of Nonionic Surfactant Dynol-604 Based Reverse Microemulsions Formed in Supercritical Carbon Dioxide. Langmuir 2001, 17, 8040-8043.
    [41] Ryoo, W.; Webber, S. E.; Johnston, K. P. Water-in-Carbon Dioxide Microemulsions with Methylated Branched Hydrocarbon Surfactants. Ind. Eng. Chem. Res. 2003, 42, 6348-6458.
    [42] Dickson, J. L.; Smith, P. G..; Dhanuka, V. V.; Srinivasan, V.; Stone, M. T.; Rossky, P. J.; Behles, J. A.; Keiper, J. S.; Xu, B.; Johnson, C.; DeSimone, J. M.; Johnston, K. P. Interfacial Properties of Fluorocarbon and Hydrocarbon Phosphate Surfactants at the Water-CO2 Interface. Ind. Eng. Chem. Res. 2005, 44, 1370-1380.
    [43] Fan, X.; Potluri, V. K.; McLeod, M. C.; Wang, Y.; Liu, J.; Enick,R. M.; Hamilton, A. D.; Roberts, C. B.; Johnson, J. K.; Beckman, E. J Oxygenated Hydrocarbon Ionic Surfactants Exhibit CO2 Solubility. J. Am. Chem. Soc. 2005, 127, 11754-11762.
    [44] Shah, P. S.; Husain, S.; Johnston, K. P.; Korgel, B. A. Nanocrystal Arrested Precipitation in Supercritical Carbon Dioxide. J. Phys. Chem. B 2001, 105, 9433-9440.
    [45] McLeod, M. C.; Gale, W. F.; Roberts, C. B. Metallic Nanoparticle Production Utilizing a Supercritical Carbon Dioxide Flow Process Langmuir 2004, 20, 7078-7082.
    [46] Fan, X.; McLeod, M. C.; Enick, R. M.; Roberts, C. B. Preparation of Silver Nanoparticles via Reduction of a Highly CO2-Soluble Hydrocarbon-Based Metal Precursor. Ind. Eng. Chem. Res. 2006, 45, 3343-3347.
    [47] Bell, P. W.; Anand, M.; Fan, X.; Enick, R. M.; Roberts, C. B. Stable Dispersions of Silver Nanoparticles in Carbon Dioxide with Fluorine-Free Ligands. Langmuir 2005, 21, 11608-11613.
    [48] Anand, M.; Bell, P. W.; Fan, X.; Roberts, C.B. Synthesis and Steric Stabilization of Silver Nanoparticles in Neat Carbon Dioxide Solvent Using Fluorine-Free Compounds. J. Phys. Chem. B 2006, 110, 14693-14701.
    [49] Hsieh, H.T.; Chin, W.K.; Tan, C.S. Facile Synthesis of Silver Nanoparticles in CO2-Expanded Liquids from Silver Isostearate Precursor. Langmuir 2010, 26, 10031-10035.
    [50] Jessop, P.G.; Subramaniam, B. Gas-expanded Liquids. Chem. Rev. 2007, 107, 2666-2694.
    [51] Xie, X.F.; Brown, J.S.; Bush, D.; Eckert, C.A. Bubble and Dew Point Measurements of the Ternary System Carbon Dioxide + Methanol + Hydrogen at 313.2 K. J. Chem. Eng. Data 2005, 50, 780-783.
    [52] Yin, J.Z.; Tan, C.S. Solubility of Hydrogen in Toluene for the Ternary System H2 + CO2 + Toluene from 305 to 343 K and 1.2 to 10.5 MPa. Fluid Phase Equilib. 2006, 242, 111-117.
    [53] Fujita, S.I.; Akihara, S. Zhao, F.; Liu, R.; Hasegawa, M.; Arai, M. Selective Hydrogenation of Cinnamaldehyde Using Ruthenium-Phosphine Complex Catalysts with Multiphase Reaction Systems in and under Pressurized Carbon Dioxide: Significance of Pressurization and Interfaces for the Control of Selectivity. J. Catal. 2005, 236, 101-111.
    [54] Hao, J.M.; Xi, C.Y.; Cheng, H.Y.; Liu, S.X.; Arai, M.; Zhao, F.Y. Influence of Compressed Carbon Dioxide on Hydrogenation Reactions in Cyclohexane with a Pd/C Catalyst. Ind. Eng. Chem. Res. 2008, 47, 6796-6800.
    [55] Wulandari, P.; Nagahiro, T.; Michioka, K.; Tamada, K.; Ishibashi, K.; Kimura, Y ,; Niwano, M. Coordination of carboxylate on metal nanoparticles characterized by Fourier transform infrared spectroscopy. Chem. Lett. 2008, 37, 888-889.
    [56] Tackett, J.E. FT-IR Characterization of Metal Acetates in Aqueous Solution. Appl. Spectrosc. 1989, 43, 483-489.
    [57] Wang, Y.C.; Du, X.Z.; Guo, L.; Liu, H.J. Chain orientation and headgroup structure in Langmuir monolayers of stearic acid and metal stearate (Ag, Co, Zn, and Pb) studied by infrared reflection-absorption spectroscopy. J. Chem. Phys. 2006, 124, 134706- 134706-9.
    [58] Papageorgiou, S.K.; Kouvelos, E.P.; Favvas, E.P.; Sapalidis, A.A.; Romanos, G.E.; Katsaros, F.K. Metal-carboxylate interactions in metal-alginate complexes studied with FTIR spectroscopy. Carbohydr. Res. 2010, 345, 469-473.
    [59] Kashiwagi, Y.; Nakamoto, M. Facile size-regulated synthesis of silver nanoparticles by controlled thermolysis of silver alkylcarboxylates in the presence of alkylamines with different chain lengths. J. Colloid Interface Sci. 2006, 300, 169-175.
    [60] Mazumder, V.; Sun, S.H. Oleylamine-Mediated Synthesis of Pd Nanoparticles for Catalytic Formic Acid Oxidation. J. Am. Chem. Soc. 2009, 131, 4588-4589.
    [61] Watt, J.; Young, N.; Yamamoto, M,; Kirkland, A,; Tilley, R.D. Synthesis and Structural Characterization of Branched Palladium Nanostructures. Adv. Mater. 2009, 21, 2288-2293.
    [62] Ferrando, R.; Jellinek, J.; Johnston, R.L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108, 845-910.
    [63] Yang C.C.; Wan C.C.; Wang Y.Y. Synthesis of Ag/Pd nanoparticles via reactive micelles as templates and its application to electroless copper deposition. J. Colloid Interface Sci. 2004, 279, 433-439.
    [64] D'Souza, L.; Bera, P.; Sampath, S. Silver-palladium nanodispersions in silicate matrices: Highly uniform, stable, bimetallic structures. J. Colloid Interface Sci. 2002, 246, 92-99.
    [65] Devarajan, S.; Bera, P.; Sampath, S. Bimetallic nanoparticles: A single step synthesis, stabilization, and characterization of Au-Ag, Au-Pd, and Au-Pt in sol-gel derived silicates. J. Colloid Interface Sci. 2005, 290, 117-129.
    [66] Hu, B.J.; Ding, K.L.; Wu, T.B.; Zhou, X.S.; Fan, H.L.; Jiang, T.; Wang, Q.A.; Han, B.X. Shape controlled synthesis of palladium nanocrystals by combination of oleylamine and alkylammonium alkylcarbamate and their catalytic activity. Chem. Commun. 2010, 46, 8552-8554.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE