簡易檢索 / 詳目顯示

研究生: 龔珮慈
Kung, Pei Tzu
論文名稱: PA-PEG-PA光交聯水膠之合成分析與應用
Synthesis, Characterization, and Application of Photo-Crosslinkable PA-PEG-PA Hydrogel
指導教授: 朱一民
Chu, I Ming
口試委員: 蔡德豪
駱俊良
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 75
中文關鍵詞: 水膠光交聯組織工程丙胺酸
外文關鍵詞: hydrogel, photocrosslink, tissue engineering, alanine
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用丙胺酸(L-alanine)和poly(ethylene glycol)(PEG)共聚合成一同時具有溫度敏感性和可進行光交聯的高分子。先在PEG以開環反應在兩末端接上poly(L-alanine)(L-PA)形成一三嵌段共聚物PA-PEG-PA(PEA),並將其末端接上丙烯醯基(acryloyl group),此過程稱為「diacrylation」。然後利用紫外光(UV light)對此材料進行照射,藉此引發聚合反應形成光交聯水膠。在本研究中,首先利用PEG與L-PA合成之高分子原本即具有溫度敏感之成膠特性,希望透過光交聯的步驟能增強其水膠的機械強度,此外由於alanine為一種生體具備的胺基酸,其作為共聚物的疏水鏈段相信比傳統聚酯類高分子(polyester)更有好的生物相容性(biocompatibility)。在本研究中證實,不論在水膠表面進行細胞培養,抑或是利用水膠包埋細胞,PEA水膠均相較PEG水膠有提升細胞相對存活率之功效;另外於PEA水膠中混摻人體骨骼主要成分磷酸鈣(β-TCP),發現有助於細胞增生及骨分化能力。綜合以上之研究結果,PEA高分子材料對於未來組織工程上的應用有很大的發展空間,例如生物黏著劑和軟骨、硬骨修復等。


    The synthesis of photocrosslinked and thermosensitive hydrogels are performed by copolymerization of poly(L-alanine)(L-PA) and poly(ethylene glycol)(PEG). Both ends of PEG were conjugated with L-PA to form a PA-PEG-PA(PEA) tri-block. Then, the terminal ends of PA-PEG-PA were modified by acroyloyl groups, which was called “diacrylation”. Exposing this material to UV-light, photo-crosslinking would begin. As photoinitiator attacked C=C double bond of vinyl groups and induced photopolymerized to form the gel. First, we want to use the thermosensitive property of the tri-block to form the hydrogel, and let it expose UV to begin photocrosslinking. This step we hope can increase mechanical strength of the hydrogel. Besides, alanine is an amino acid, it is more suitable to culture cell than polyester hydrogels. We think the hydrogel we made that can increase not only strength but with good biocompatibility. In this study, we prove that PEA hydrogel can enhance cell proliferation whether cell seeded on hydrogel surface or encapsulated into hydrogel. Comparing with PEG hydrogel, PEA hydrogel has better performance on cell viability than PEG hydrogel. In addition, we study that PEA incorporated with β-TCP which is main component of bone can promote cell proliferation and also induce osteogenic differentiation. In summary, this copolymer “PEA” has wide range of the development in the tissue engineering field, such as bioadhesive, cartilage or bone regeneration.

    第一章 文獻回顧 1 1.1 水膠(Hydrogel) 1 1.1.1 光交聯水膠(Photocrosslinked hydrogel) 2 1.1.2 溫度敏感型胺基酸水膠(Polypeptide hydrogel) 3 1.1.3 聚酯類高分子水膠(Polyester hydrogel) 5 1.2 水膠成膠機制探討 9 1.2.1 光交聯成膠機制 9 1.2.2 溫度敏感型胺基酸水膠成膠機制 12 1.3 水膠在組織工程上的應用 16 1.3.1 生長因子包埋進行骨組織修復 19 1.3.2 軟骨組織修復 21 1.3.3 硬骨組織修復 23 第二章 研究動機與目的 25 第三章 實驗材料與方法 26 3.1 實驗藥品 26 3.2 實驗儀器 27 3.3 PA-PEG-PA三嵌段共聚物合成 28 3.3.1 PEG末端改質(-OH基→-NH2基) 28 3.3.2 N-carboxyl anhydride of L-Alanine(NCA’ s Ala)環化反應 28 3.3.3 PA-PEG-PA合成製備 29 3.4 PA-PEG-PA末端烯基化修飾 29 3.5 PEG末端烯基化修飾 30 3.6 高分子鑑定 31 3.6.1 核磁共振光譜(1H-NMR) 31 3.6.2 凝膠滲透層析儀(gel permeation chromatography, GPC) 31 3.6.3 臨界微胞濃度(critical micelle concentration, CMC) 32 3.6.4 粒徑分布 33 3.7 光交聯水膠製備 33 3.8 水膠性質觀察與測量 33 3.8.1 水膠結構型態 33 3.8.2 含水率(water content) 34 3.8.3 膠含率(gel fraction) 34 3.8.4 水膠相轉換測定(Sol-Gel transition) 34 3.8.5 胺基酸水膠二級結構鑑定 35 3.8.6 抗壓測試(compression test) 35 3.9 水膠之生物相容性(biocompatibility) 36 3.9.1 酵素降解測試 36 3.9.2 材料毒性測試 36 3.9.3 水膠表面分析 37 3.9.4 細胞包埋 38 3.10 PEA高分子水膠混摻β-TCP 39 3.10.1 PEA/β-TCP水膠製作 39 3.10.2 PEA/β-TCP水膠性質量測 39 3.10.3 PEA/β-TCP水膠三維細胞培養 39 第四章 實驗結果與討論 41 4.1 高分子結構與性質鑑定 41 4.2 水膠型態與結構 46 4.2.1 成膠性質測試 46 4.2.2 掃描式電子顯微鏡(SEM) 47 4.2.3 含水率(water content) 48 4.2.4 膠含率(gel fraction) 49 4.2.5 胺基酸二級結構 50 4.2.6 相轉換(sol-gel phase transition) 52 4.2.7 抗壓測試(compression test) 54 4.3 水膠之生物相容性 56 4.3.1 酵素降解測試 56 4.3.2 材料細胞毒性測試(in vitro cytotoxicity assay) 58 4.3.3 水膠表面之分析 59 4.3.4 細胞包埋之生長現象 60 4.4 PEA水膠混摻β-TCP 63 4.4.1 PEA/β-TCP水膠之含水率 63 4.4.2 PEA/β-TCP水膠之抗壓測試 64 4.4.3 細胞毒性 65 4.4.4 ALP染色 66 第五章 結論 68 第六章 未來展望 71 第七章 參考文獻 72

    [1] Hoare, T. R., and Kohane, D. S. (2008) Hydrogels in drug delivery: Progress and challenges, Polymer 49, 1993-2007.
    [2] Wichterle, O., and Lim, D. (1960) Hydrophilic Gels for Biological Use, Nature 185, 117-118.
    [3] Dušek, K., and Patterson, D. (1968) Transition in swollen polymer networks induced by intramolecular condensation, Journal of Polymer Science Part A-2: Polymer Physics 6, 1209-1216.
    [4] Nuttelman, C. R., Rice, M. A., Rydholm, A. E., Salinas, C. N., Shah, D. N., and Anseth, K. S. (2008) Macromolecular monomers for the synthesis of hydrogel niches and their application in cell encapsulation and tissue engineering, Progress in Polymer Science 33, 167-179.
    [5] Yang, J., Han, C.-R., Duan, J.-F., Xu, F., and Sun, R.-C. (2013) Mechanical and Viscoelastic Properties of Cellulose Nanocrystals Reinforced Poly(ethylene glycol) Nanocomposite Hydrogels, ACS Applied Materials & Interfaces 5, 3199-3207.
    [6] Ifkovits, J. L., and Burdick, J. A. (2007) Review: Photopolymerizable and degradable biomaterials for tissue engineering applications, Tissue Engineering 13, 2369-2385.
    [7] Bryant, S. J., Nuttelman, C. R., and Anseth, K. S. (2000) Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro, Journal of biomaterials science. Polymer edition 11, 439-457.
    [8] Chan, B. K., Wippich, C. C., Wu, C.-J., Sivasankar, P. M., and Schmidt, G. (2012) Robust and Semi-Interpenetrating Hydrogels from Poly(ethylene glycol) and Collagen for Elastomeric Tissue Scaffolds, Macromolecular Bioscience 12, 1490-1501.
    [9] Cruise, G. M., Scharp, D. S., and Hubbell, J. A. (1998) Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels, Biomaterials 19, 1287-1294.
    [10] Yoshii, E. (1997) Cytotoxic effects of acrylates and methacrylates: Relationships of monomer structures and cytotoxicity, Journal of biomedical materials research 37, 517-524.
    [11] Odian, G. (2004) Principles of Polymerization, 4th Edition, Wiley, New York.
    [12] Bryant, S. J., and Anseth, K. S. (2001) The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels, Biomaterials 22, 619-626.
    [13] Burdick, J. A., and Anseth, K. S. (2002) Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering, Biomaterials 23, 4315-4323.
    [14] Nuttelman, C. R., Tripodi, M. C., and Anseth, K. S. (2004) In vitro osteogenic differentiation of human mesenchymal stem cells photoencapsulated in PEG hydrogels, Journal of Biomedical Materials Research Part A 68A, 773-782.
    [15] Yu, L., and Ding, J. (2008) Injectable hydrogels as unique biomedical materials, Chemical Society Reviews 37, 1473-1481.
    [16] Choi, Y. Y., Jang, J. H., Park, M. H., Choi, B. G., Chi, B., and Jeong, B. (2010) Block length affects secondary structure, nanoassembly and thermosensitivity of poly(ethylene glycol)-poly(l-alanine) block copolymers, Journal of Materials Chemistry 20, 3416-3421.
    [17] Greenwald, R. B., Choe, Y. H., McGuire, J., and Conover, C. D. (2003) Effective drug delivery by PEGylated drug conjugates, Advanced Drug Delivery Reviews 55, 217-250.
    [18] Yun, E. J., Yon, B., Joo, M. K., and Jeong, B. (2012) Cell Therapy for Skin Wound Using Fibroblast Encapsulated Poly(ethylene glycol)-poly(l-alanine) Thermogel, Biomacromolecules 13, 1106-1111.
    [19] Yeon, B., Park, M. H., Moon, H. J., Kim, S. J., Cheon, Y. W., and Jeong, B. (2013) 3D Culture of Adipose-Tissue-Derived Stem Cells Mainly Leads to Chondrogenesis in Poly(ethylene glycol)-Poly(L-alanine) Diblock Copolymer Thermogel, Biomacromolecules 14, 3256-3266.
    [20] Kweon, H., Yoo, M. K., Park, I. K., Kim, T. H., Lee, H. C., Lee, H.-S., Oh, J.-S., Akaike, T., and Cho, C.-S. (2003) A novel degradable polycaprolactone networks for tissue engineering, Biomaterials 24, 801-808.
    [21] Li, S., Molina, I., Martinez, M., and Vert, M. (2002) Hydrolytic and enzymatic degradations of physically crosslinked hydrogels prepared from PLA/PEO/PLA triblock copolymers, Journal of Materials Science: Materials in Medicine 13, 81-86.
    [22] Thi Hong Anh, N., and Van Cuong, N. (2010) Formation of nanoparticles in aqueous solution from poly(ε-caprolactone)–poly(ethylene glycol)–poly(ε-caprolactone), Advances in Natural Sciences: Nanoscience and Nanotechnology 1, 025012.
    [23] Zhang, Y., Wu, X., Han, Y., Mo, F., Duan, Y., and Li, S. (2010) Novel thymopentin release systems prepared from bioresorbable PLA-PEG-PLA hydrogels, Int J Pharm 386, 15-22.
    [24] Yu, L., Chang, G. T., Zhang, H., and Ding, J. D. (2008) Injectable block copolymer hydrogels for sustained release of a PEGylated drug, Int J Pharm 348, 95-106.
    [25] Ko, C.-Y., Yang, C.-Y., Yang, S.-R., Ku, K.-L., Tsao, C.-K., Chwei-Chin Chuang, D., Chu, I. M., and Cheng, M.-H. (2013) Cartilage formation through alterations of amphiphilicity of poly(ethylene glycol)-poly(caprolactone) copolymer hydrogels, RSC Advances 3, 25769-25779.
    [26] Vitale, A., Bongiovanni, R., and Ameduri, B. (2015) Fluorinated Oligomers and Polymers in Photopolymerization, Chemical Reviews 115, 8835-8866.
    [27] Muggli, D. S., Burkoth, A. K., Keyser, S. A., Lee, H. R., and Anseth, K. S. (1998) Reaction Behavior of Biodegradable, Photo-Cross-Linkable Polyanhydrides, Macromolecules 31, 4120-4125.
    [28] Anseth, K. S., Wang, C. M., and Bowman, C. N. (1994) REACTION BEHAVIOR AND KINETIC CONSTANTS FOR PHOTOPOLYMERIZATIONS OF MULTI(METH)ACRYLATE MONOMERS, Polymer 35, 3243-3250.
    [29] Oh, H. J., Joo, M. K., Sohn, Y. S., and Jeong, B. (2008) Secondary Structure Effect of Polypeptide on Reverse Thermal Gelation and Degradation of l/dl-Poly(alanine)–Poloxamer–l/dl-Poly(alanine) Copolymers, Macromolecules 41, 8204-8209.
    [30] Choi, Y. Y., Joo, M. K., Sohn, Y. S., and Jeong, B. (2008) Significance of secondary structure in nanostructure formation and thermosensitivity of polypeptide block copolymers, Soft Matter 4, 2383-2387.
    [31] Blache, U., Metzger, S., Vallmajo-Martin, Q., Martin, I., Djonov, V., and Ehrbar, M. (2016) Dual Role of Mesenchymal Stem Cells Allows for Microvascularized Bone Tissue-Like Environments in PEG Hydrogels, Advanced Healthcare Materials 5, 489-498.
    [32] Agrawal, V., and Sinha, M. (2016) A review on carrier systems for bone morphogenetic protein-2, Journal of Biomedical Materials Research Part B: Applied Biomaterials, n/a-n/a.
    [33] Han, F., Yang, X., Zhao, J., Zhao, Y., and Yuan, X. (2015) Photocrosslinked layered gelatin-chitosan hydrogel with graded compositions for osteochondral defect repair, Journal of Materials Science: Materials in Medicine 26, 1-13.
    [34] Ma, K., Titan, A. L., Stafford, M., Zheng, C. h., and Levenston, M. E. (2012) Variations in chondrogenesis of human bone marrow-derived mesenchymal stem cells in fibrin/alginate blended hydrogels, Acta Biomaterialia 8, 3754-3764.
    [35] Goldshmid, R., Cohen, S., Shachaf, Y., Kupershmit, I., Sarig-Nadir, O., Seliktar, D., and Wechsler, R. (2015) Steric Interference of Adhesion Supports In-Vitro Chondrogenesis of Mesenchymal Stem Cells on Hydrogels for Cartilage Repair, Scientific reports 5, 12607.
    [36] Jefferiss, C. D., Lee, A. J., and Ling, R. S. (1975) Thermal aspects of self-curing polymethylmethacrylate, The Journal of bone and joint surgery. British volume 57, 511-518.
    [37] Dee, K. C., Andersen, T. T., and Bizios, R. (1999) Osteoblast population migration characteristics on substrates modified with immobilized adhesive peptides, Biomaterials 20, 221-227.
    [38] Elluru, M., Ma, H., Hadjiargyrou, M., Hsiao, B. S., and Chu, B. (2013) Synthesis and characterization of biocompatible hydrogel using Pluronics-based block copolymers, Polymer 54, 2088-2095.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE