簡易檢索 / 詳目顯示

研究生: 郭秉學
Kuo, Ping-Hsueh
論文名稱: 以具細胞穿透能力之醣胺聚糖結合胜肽開發新穎腫瘤標靶奈米藥物
Characterization of a cell-penetrating glycosaminoglycan binding peptide for novel nanoparticle drug development
指導教授: 張大慈
Chang, Margaret Dah-Tsyr
口試委員: 楊嘉鈴
Yang, Jia-Ling
王慧菁
Wang, Lily Hui-Ching
曾雲龍
Tseng, Yun-Long
徐祖安
Hsu, Tsu-An
林彥穎
Lin, Yin-Yen
鄭兆勝
Cheng, Chao-Cheng
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 119
中文關鍵詞: 藥物運輸胞外基質硫酸肝素聚糖腫瘤穿透
外文關鍵詞: drug delivery, extracellular cellular, heparan sulfate, tumor penetration
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以胜肽為基礎發展之生醫材料具備多樣性的功能及專一性的配體-受體結合能力,已廣泛使用於腫瘤診斷及治療之生醫應用開發。在結締組織增生性(desmoplastic)癌組織細胞間質(stroma)中,癌症微環境是由間質細胞、內皮細胞、細胞因子及胞外基質(extracellular matrix、ECM)等交互作用形成。在非小細胞肺癌及胰腺癌中,與癌細胞互動密切的纖維母細胞(cancer associated fibroblasts)會大量分泌堆積胞外基質於腫瘤組織,並形成膠狀結構屏蔽癌細胞不受外來物質接近。此膠狀結構主要由蛋白及醣胺多醣(glycosaminoglycans、GAGs)組成,大幅限制外來生物材料的腫瘤穿透能力,導致藥物無法堆積於腫瘤組織亦無法穿透至深層癌組織。本研究探討細胞表面及胞外基質的硫酸肝素聚糖(heparan sulfate、HS)及其蛋白聚糖(proteoglycan)作為癌標靶分子標誌之可行性,以一段含有色氨酸的醣胺多醣結合胜肽(GAG binding peptide、GBP)發展標的HS之生醫材料運輸系統。GBP共接合之物質包括同位素、重組蛋白及奈米粒子等,與HS特異性結合後可有效穿透細胞。本研究以GBP修飾阿黴素之微脂體抗癌藥物(liposomal doxorubicin、LipoDox)形成新劑型之GBP鑲嵌之微脂體藥物(GBP-modified LipoDox、LipoDox-GBP)。以人類肺腺癌來源細胞株A549為基礎的試管內(in vitro)研究顯示,LipoDox-GBP能有效增強HS引導之細胞吞噬作用,產生高效率的細胞致死功能;此外,GBP修飾亦優化LipoDox於活體內(in vivo)的藥物分佈及抗癌藥物於腫瘤組織內的穿透能力,大幅提升活體腫瘤模式小鼠的治療效率。總而言之,在高度表現HS的結締組織增生性癌組織中,GBP能有效引導奈米粒子聚積於腫瘤組織並提升組織穿透效率,明顯強化抗癌藥物功能。本研究具體貢獻為成功開發新劑型之GBP鑲嵌型微脂體藥物,透過促進奈米粒子特異性標的硫酸肝素聚糖異常表現癌組織。此新穎策略可應用於奈米粒子標的及穿透腫瘤組織已解決尚未滿足之醫療需求。


    Peptide-based biomaterials have been extensively developed for biomedical applications against neoplasma due to their functional versatility and specific ligand-receptor binding activity. Desmoplastic stroma of a malignant tumor constitutes a tumor microenvironment that consists of closely interacting elements including stroma cells, endothelial cells, cytokines, and extracellular matrix (ECM). In the case of non-small cell lung cancer (NSCLC) and pancreatic ductal adenocarcinoma, cancer associated fibroblasts elicit aggregation of gel-like ECM to form physical barrier in desmoplastic stroma of the tumor. These stroma composes of protein network and glycosaminoglycans (GAGs) that greatly compromise tumor-penetrating performance, leading to insufficient extravasation and tissue penetration of biomaterials. Interestingly, the presence of heparan sulfate (HS) and related proteoglycans on the cell surface and tumor ECM may serve as molecular targets for HS-mediated drug delivery. In this study a tryptophan-containing GAG binding peptide (GBP) with high affinity to HS and high cell penetrating activity was used to develop a HS-targeting delivery to shuttle isotope, protein, as well as nanoparticles. Specifically, liposomal doxorubicin (LipoDox) is modified by post-insertion with GBP. Interestingly, in vitro uptake of LipoDox in lung adenocarcinoma cells A549 is increased by GBP modification. Cellular uptake of GBP-modified LipoDox (LipoDox-GBP) is diminished in the presence of extracellular HS, but not chondroitin sulfate or hyaluronic acid, indicating that the interaction with HS is critical for the cell surface binding of LipoDox-GBP. Cytotoxicity of doxorubicin positively correlates with the molecular composition of GBP. Moreover, GBP modification improves in vivo distribution and anti-cancer efficiency of LipoDox, with enhanced desmoplastic targeting and interstitial transport activities. Taken together, we have discovered that GBP modification may largely improve tissue penetration and delivery of NP against HS-abundant desmoplastic stroma associated neoplasm, which in turn many contribute to novel drug design and formulation to fulfill unmet medical need.

    Abstract I 中文摘要 II 致謝 III List of Contents IV List of Tables VII List of Figures VIII List of Appendices X Abbreviation XI Chapter 1 Introduction 1 1.1 Heparan sulfate and heparan proteoglycans 1 1.2 Roles of HS in desmoplastic stroma of malignant tumor 2 1.3 Lung cancer and non-small cell carcinoma 3 1.4 Cell penetrating peptide and its penetration mechanism 4 1.5 Cell penetrating peptide-derived therapies in clinical trials 5 1.6 Tryptophan-containing glycosaminoglycan binding peptide 6 1.7 Drug delivery system (DDS) 8 1.8 Difficulty and limitation of nanoparticle in introtumoral transport 11 1.9 Ligand-mediated drug delivery system 11 1.10 Liposome 14 Chapter 2 Rationale, hypothesis, and specific aims 17 2.1 Rationale 17 2.2 Hypothesis 17 2.3 Specific aims 18 Chapter 3 Materials and method 19 3.1 Reagents 19 3.2 Cell lines 19 3.3 Competent cell preparation and transformation 20 3.4 Expression of eGFP and eGFP-GBP 20 3.5 Purification of eGFP and eGFP-GBP 20 3.6 Buffer exchange, protein concentration and quantification 21 3.7 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 21 3.8 Western blotting 22 3.9 Preparation and purification of DSPE-PEG2k-GBP 22 3.10 Apparatus and chromatographic conditions 23 3.11 Preparation of GBP-modified liposome 24 3.12 Characterization of particle size and zeta potential 24 3.13 Immunofluorescence assay 24 3.14 Flow cytometery 24 3.15 Cytotoxicity analysis 25 3.16 GAG competition effect 25 3.17 Evaluation of nanoparticle penetration activity in heterospheroid 25 3.18 Establishment of human lung adenocarcinoma xenograft mouse model 26 3.19 In vivo imaging 26 3.20 Sample preparation for doxorubicin qualification in tissue for in vivo distribution analysis 27 3.21 In vivo therapeutic effect 27 3.22 Hematoxylin and eosin stain (H&E) staining 28 3.23 Immunohistochemistry (IHC) staining 28 3.24 Immunofluorescence staining for tissue section 29 3.25 Statistical analysis 29 Chapter 4 Results 30 4.1 Biodistribution of isotope labeled GBP in normal mouse model 30 4.2 Biodistribution of isotope labeled GBP in H460 tumor-bearing xenograft mouse model 30 4.3 Design and preparation of HS-targeted GBP-modified NPs 31 4.4 NP property characterization of LipoDox-GBP 32 4.5 Cellular uptake of GBP-modified liposome 32 4.6 GAG competition effect on GBP-elicited cellular uptake 33 4.7 Drug release after GBP-elicited cellular uptake 33 4.8 In vitro cytotoxicity of LipoDox-GBP 34 4.9 3D tumor stroma-containing hetero-spheroid penetration 34 4.10 Drug penetration in tumor stroma-containing heterospheroid 35 4.11 In vivo tumor accumulation of LipoDox-GBP 35 4.12 Tissue penetration activity of LipoDox-GBP 36 4.13 In vivo antitumor efficiency of LipoDox-GBP 37 4.14 Construct, purification, and characterization of HMSTB-7C12-CS and HMSTB-7C12-CS-GBP 38 4.15 Cell binding and penetrating activities of HMSTB-7C12-CS-GBP 39 4.16 In vitro and in vivo anti-tumor effect of HMSTB-7C12-CS and HMSTB-7C12-CS-GBP 40 Chapter 5 Discussion 41 5.1 Role of HS in desmoplastic tumor architecture 41 5.2 Ligand-mediated NP delivery 41 5.3 Application of peptide-NP conjugates in tumor tissue penetration 43 5.4 Binding site barrier of the ligand-receptor targeting strategy 45 5.5 Interstitial transport of LipoDox-GBP by interacting with ECM 46 5.6 In vivo clearance of liposomal NPs with the GBP modification 48 5.7 In vitro and in vivo function characterization and application of GBP 50 Chapter 6 Conclusion 51 Table 52 Figure 60 Publication, patent, and award 97 Journal article 97 Book section 97 Patent 98 Conference poster 98 Award 102 Reference 103 Appendix 117

    1. Mythreye, K. and G.C. Blobe, Proteoglycan signaling co-receptors: roles in cell adhesion, migration and invasion. Cell Signal, 2009. 21(11): p. 1548-58.
    2. Frey, H., et al., Biological interplay between proteoglycans and their innate immune receptors in inflammation. FEBS J, 2013. 280(10): p. 2165-79.
    3. Theocharis, A.D., et al., Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J, 2010. 277(19): p. 3904-23.
    4. Sarrazin, S., W.C. Lamanna, and J.D. Esko, Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol, 2011. 3(7).
    5. Purushothaman, A., et al., Heparanase-mediated loss of nuclear syndecan-1 enhances histone acetyltransferase (HAT) activity to promote expression of genes that drive an aggressive tumor phenotype. J Biol Chem, 2011. 286(35): p. 30377-83.
    6. Stanley, M.J., et al., Syndecan-1 expression is induced in the stroma of infiltrating breast carcinoma. Am J Clin Pathol, 1999. 112(3): p. 377-83.
    7. Perrimon, N. and M. Bernfield, Cellular functions of proteoglycans--an overview. Semin Cell Dev Biol, 2001. 12(2): p. 65-7.
    8. Choi, S., et al., Transmembrane domain-induced oligomerization is crucial for the functions of syndecan-2 and syndecan-4. J Biol Chem, 2005. 280(52): p. 42573-9.
    9. Beauvais, D.M., B.J. Burbach, and A.C. Rapraeger, The syndecan-1 ectodomain regulates alphavbeta3 integrin activity in human mammary carcinoma cells. J Cell Biol, 2004. 167(1): p. 171-81.
    10. Purushothaman, A., et al., Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood, 2010. 115(12): p. 2449-57.
    11. Partovian, C., et al., Syndecan-4 regulates subcellular localization of mTOR Complex2 and Akt activation in a PKCalpha-dependent manner in endothelial cells. Mol Cell, 2008. 32(1): p. 140-9.
    12. Huveneers, S., et al., Binding of soluble fibronectin to integrin alpha5 beta1 - link to focal adhesion redistribution and contractile shape. J Cell Sci, 2008. 121(Pt 15): p. 2452-62.
    13. Wegrowski, Y., et al., Cell surface proteoglycan expression during maturation of human monocytes-derived dendritic cells and macrophages. Clin Exp Immunol, 2006. 144(3): p. 485-93.
    14. Maeshima, A.M., et al., Modified scar grade: a prognostic indicator in small peripheral lung adenocarcinoma. Cancer, 2002. 95(12): p. 2546-54.
    15. Tjomsland, V., et al., The desmoplastic stroma plays an essential role in the accumulation and modulation of infiltrated immune cells in pancreatic adenocarcinoma. Clin Dev Immunol, 2011. 2011: p. 212810.
    16. Murakami, D., et al., Periostin Expression in Non-Small Cell Lung Cancer: Clinical Significance. Kurume Med J, 2018. 64(1.2): p. 13-20.
    17. Hodkinson, P.S., A.C. Mackinnon, and T. Sethi, Extracellular matrix regulation of drug resistance in small-cell lung cancer. Int J Radiat Biol, 2007. 83(11-12): p. 733-41.
    18. Keeratichamroen, S., K. Lirdprapamongkol, and J. Svasti, Mechanism of ECM-induced dormancy and chemoresistance in A549 human lung carcinoma cells. Oncol Rep, 2018. 39(4): p. 1765-1774.
    19. Lee, S.W., et al., Fibroblast-associated tumour microenvironment induces vascular structure-networked tumouroid. Sci Rep, 2018. 8(1): p. 2365.
    20. Raman, K. and B. Kuberan, Chemical Tumor Biology of Heparan Sulfate Proteoglycans. Curr Chem Biol, 2010. 4(1): p. 20-31.
    21. Marolla, A.P., et al., Glycomics expression analysis of sulfated glycosaminoglycans of human colorectal cancer tissues and non-neoplastic mucosa by electrospray ionization mass spectrometry. Einstein (Sao Paulo), 2015. 13(4): p. 510-7.
    22. Rangel, M.P., et al., Biomolecular analysis of matrix proteoglycans as biomarkers in non small cell lung cancer. Glycoconjugate Journal, 2018. 35(2): p. 233-242.
    23. Naba, A., et al., The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics, 2012. 11(4): p. M111 014647.
    24. Kawahara, R., et al., Agrin and perlecan mediate tumorigenic processes in oral squamous cell carcinoma. PLoS One, 2014. 9(12): p. e115004.
    25. Fuster, M.M. and L. Wang, Endothelial heparan sulfate in angiogenesis. Prog Mol Biol Transl Sci, 2010. 93: p. 179-212.
    26. Payne, C.K., et al., Internalization and trafficking of cell surface proteoglycans and proteoglycan-binding ligands. Traffic, 2007. 8(4): p. 389-401.
    27. Christianson, H.C. and M. Belting, Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biology, 2014. 35: p. 51-55.
    28. Singh, H., et al., Characteristics and predictors of missed opportunities in lung cancer diagnosis: an electronic health record-based study. J Clin Oncol, 2010. 28(20): p. 3307-15.
    29. Margaretten, N.C. and H.R. Witschi, Effects of hyperoxia on growth of experimental lung metastasis. Carcinogenesis, 1988. 9(3): p. 433-9.
    30. Uramoto, H. and F. Tanaka, Recurrence after surgery in patients with NSCLC. Transl Lung Cancer Res, 2014. 3(4): p. 242-9.
    31. Ter-Avetisyan, G., et al., Cell Entry of Arginine-rich Peptides Is Independent of Endocytosis. Journal of Biological Chemistry, 2009. 284(6): p. 3370-3378.
    32. Koren, E. and V.P. Torchilin, Cell-penetrating peptides: breaking through to the other side. Trends in Molecular Medicine, 2012. 18(7): p. 385-393.
    33. Green, M. and P.M. Loewenstein, Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell, 1988. 55(6): p. 1179-88.
    34. Ensoli, B., et al., Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol, 1993. 67(1): p. 277-87.
    35. Joliot, A., et al., Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci U S A, 1991. 88(5): p. 1864-8.
    36. Elmquist, A., M. Hansen, and U. Langel, Structure-activity relationship study of the cell-penetrating peptide pVEC. Biochim Biophys Acta, 2006. 1758(6): p. 721-9.
    37. Takechi, Y., et al., Physicochemical mechanism for the enhanced ability of lipid membrane penetration of polyarginine. Langmuir, 2011. 27(11): p. 7099-107.
    38. Hung, L.C., et al., Heparin-Promoted Cellular Uptake of the Cell-Penetrating Glycosaminoglycan Binding Peptide, GBPECP, Depends on a Single Tryptophan. ACS Chem Biol, 2017. 12(2): p. 398-406.
    39. Huang, S., et al., Tumor targeting and microenvironment-responsive nanoparticles for gene delivery. Biomaterials, 2013. 34(21): p. 5294-302.
    40. Direct Inhibition of delta-Protein Kinase, C.E.t.L.T.I.S.i.A.M.I.I., et al., Intracoronary KAI-9803 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction. Circulation, 2008. 117(7): p. 886-96.
    41. Lindgren, M. and U. Langel, Classes and prediction of cell-penetrating peptides. Methods Mol Biol, 2011. 683: p. 3-19.
    42. Jia, L., et al., Preclinical pharmacokinetics, metabolism, and toxicity of azurin-p28 (NSC745104) a peptide inhibitor of p53 ubiquitination. Cancer Chemother Pharmacol, 2011. 68(2): p. 513-24.
    43. Suckfuell, M., et al., Efficacy and safety of AM-111 in the treatment of acute sensorineural hearing loss: a double-blind, randomized, placebo-controlled phase II study. Otol Neurotol, 2014. 35(8): p. 1317-26.
    44. Lopes, L.B., et al., Cell permeant peptide analogues of the small heat shock protein, HSP20, reduce TGF-beta1-induced CTGF expression in keloid fibroblasts. J Invest Dermatol, 2009. 129(3): p. 590-8.
    45. Warso, M.A., et al., A first-in-class, first-in-human, phase I trial of p28, a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in patients with advanced solid tumours. Br J Cancer, 2013. 108(5): p. 1061-70.
    46. Cousins, M.J., et al., The safety and efficacy of KAI-1678- an inhibitor of epsilon protein kinase C (epsilonPKC)-versus lidocaine and placebo for the treatment of postherpetic neuralgia: a crossover study design. Pain Med, 2013. 14(4): p. 533-40.
    47. Deloche, C., et al., XG-102 administered to healthy male volunteers as a single intravenous infusion: a randomized, double-blind, placebo-controlled, dose-escalating study. Pharmacol Res Perspect, 2014. 2(1): p. e00020.
    48. Touchard, E., et al., A peptide inhibitor of c-Jun N-terminal kinase for the treatment of endotoxin-induced uveitis. Invest Ophthalmol Vis Sci, 2010. 51(9): p. 4683-93.
    49. Rydberg, H.A., et al., Effects of tryptophan content and backbone spacing on the uptake efficiency of cell-penetrating peptides. Biochemistry, 2012. 51(27): p. 5531-9.
    50. Jobin, M.L., et al., The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides. Biochim Biophys Acta, 2015. 1848(2): p. 593-602.
    51. Bechara, C., et al., Tryptophan within basic peptide sequences triggers glycosaminoglycan-dependent endocytosis. FASEB J, 2013. 27(2): p. 738-49.
    52. Bechara, C. and S. Sagan, Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett, 2013. 587(12): p. 1693-702.
    53. Jobin, M.L., et al., The enhanced membrane interaction and perturbation of a cell penetrating peptide in the presence of anionic lipids: toward an understanding of its selectivity for cancer cells. Biochim Biophys Acta, 2013. 1828(6): p. 1457-70.
    54. Hung, T.-J., Structural basis for differential heparin binding modes of human eosinophil ribonucleases, in Institute of Molecular and Cellular Biology. 2013, National Tsing Hua University, Hsinchu, Taiwan.
    55. Fang, S.L., et al., A novel cell-penetrating peptide derived from human eosinophil cationic protein. PLoS One, 2013. 8(3): p. e57318.
    56. Lien, P.C., et al., In silico prediction and in vitro characterization of multifunctional human RNase3. Biomed Res Int, 2013. 2013: p. 170398.
    57. Chen, C.J., et al., A Heparan Sulfate-Binding Cell Penetrating Peptide for Tumor Targeting and Migration Inhibition. Biomed Res Int, 2015. 2015: p. 237969.
    58. Yu, S.J., et al., Cell-penetrating peptide derived from human eosinophil cationic protein inhibits mite allergen Der p 2 induced inflammasome activation. PLoS One, 2015. 10(3): p. e0121393.
    59. Fu, L.S., et al., Cell Penetrating Peptide Derived from Human Eosinophil Cationic Protein Decreases Airway Allergic Inflammation. Sci Rep, 2017. 7(1): p. 12352.
    60. Matsumura, Y. and H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res, 1986. 46(12 Pt 1): p. 6387-92.
    61. Greish, K., Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol, 2010. 624: p. 25-37.
    62. Manohar, N., et al., Quantitative imaging of gold nanoparticle distribution in a tumor-bearing mouse using benchtop x-ray fluorescence computed tomography. Sci Rep, 2016. 6: p. 22079.
    63. Alexis, F., et al., Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm, 2008. 5(4): p. 505-15.
    64. Islam, M.A., S. Barua, and D. Barua, A multiscale modeling study of particle size effects on the tissue penetration efficacy of drug-delivery nanoparticles. BMC Syst Biol, 2017. 11(1): p. 113.
    65. Honary, S. and F. Zahir, Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems - A Review (Part 2). Tropical Journal of Pharmaceutical Research, 2013. 12(2): p. 265-273.
    66. Muller, R.H., C. Jacobs, and O. Kayser, Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev, 2001. 47(1): p. 3-19.
    67. Feng, S.S., G. Ruan, and Q.T. Li, Fabrication and characterizations of a novel drug delivery device liposomes-in-microsphere (LIM). Biomaterials, 2004. 25(21): p. 5181-9.
    68. Liu, J., et al., Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm, 2007. 328(2): p. 191-5.
    69. Kedmi, R., N. Ben-Arie, and D. Peer, The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials, 2010. 31(26): p. 6867-75.
    70. Bawarski, W.E., et al., Emerging nanopharmaceuticals. Nanomedicine, 2008. 4(4): p. 273-82.
    71. Unger, F., M. Wittmar, and T. Kissel, Branched polyesters based on poly[vinyl-3-(dialkylamino)alkylcarbamate-co-vinyl acetate-co-vinyl alcohol]-graft-poly(d,l-lactide-co-glycolide): effects of polymer structure on cytotoxicity. Biomaterials, 2007. 28(9): p. 1610-9.
    72. Champion, J.A., Y.K. Katare, and S. Mitragotri, Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release, 2007. 121(1-2): p. 3-9.
    73. Moghimi, S.M., A.C. Hunter, and J.C. Murray, Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev, 2001. 53(2): p. 283-318.
    74. Yang, Q. and S.K. Lai, Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2015. 7(5): p. 655-77.
    75. Klibanov, A.L., et al., Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett, 1990. 268(1): p. 235-7.
    76. Vonarbourg, A., et al., Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials, 2006. 27(24): p. 4356-73.
    77. Lee, H., et al., The effects of particle size and molecular targeting on the intratumoral and subcellular distribution of polymeric nanoparticles. Mol Pharm, 2010. 7(4): p. 1195-208.
    78. Li, Y., et al., Delivery of nanomedicines to extracellular and intracellular compartments of a solid tumor. Adv Drug Deliv Rev, 2012. 64(1): p. 29-39.
    79. Nishihara, H., Human pathological basis of blood vessels and stromal tissue for nanotechnology. Adv Drug Deliv Rev, 2014. 74: p. 19-27.
    80. Bremnes, R.M., et al., The Role of Tumor Stroma in Cancer Progression and Prognosis Emphasis on Carcinoma-Associated Fibroblasts and Non-small Cell Lung Cancer. Journal of Thoracic Oncology, 2011. 6(1): p. 209-217.
    81. Navab, R., et al., Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer. Proc Natl Acad Sci U S A, 2011. 108(17): p. 7160-5.
    82. Chu, G.C., et al., Stromal biology of pancreatic cancer. J Cell Biochem, 2007. 101(4): p. 887-907.
    83. Cheng, L., et al., Staging and reporting of urothelial carcinoma of the urinary bladder. Mod Pathol, 2009. 22 Suppl 2: p. S70-95.
    84. Yamashita, M., et al., Role of stromal myofibroblasts in invasive breast cancer: stromal expression of alpha-smooth muscle actin correlates with worse clinical outcome. Breast Cancer, 2012. 19(2): p. 170-6.
    85. Yoo, J., et al., Active Targeting Strategies Using Biological Ligands for Nanoparticle Drug Delivery Systems. Cancers (Basel), 2019. 11(5).
    86. Sugahara, K.N., et al., Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science, 2010. 328(5981): p. 1031-5.
    87. Choi, K.Y., et al., Smart nanocarrier based on PEGylated hyaluronic acid for cancer therapy. ACS Nano, 2011. 5(11): p. 8591-9.
    88. Smith, B., et al., Hyperthermia-triggered intracellular delivery of anticancer agent to HER2(+) cells by HER2-specific affibody (ZHER2-GS-Cys)-conjugated thermosensitive liposomes (HER2(+) affisomes). J Control Release, 2011. 153(2): p. 187-94.
    89. Deshayes, S., et al., Phenylboronic acid-installed polymeric micelles for targeting sialylated epitopes in solid tumors. J Am Chem Soc, 2013. 135(41): p. 15501-7.
    90. Chi, L., et al., Enhanced delivery of liposomes to lung tumor through targeting interleukin-4 receptor on both tumor cells and tumor endothelial cells. J Control Release, 2015. 209: p. 327-36.
    91. Clark, A.J. and M.E. Davis, Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc Natl Acad Sci U S A, 2015. 112(40): p. 12486-91.
    92. Huo, M., et al., Tumor-targeted delivery of sunitinib base enhances vaccine therapy for advanced melanoma by remodeling the tumor microenvironment. J Control Release, 2017. 245: p. 81-94.
    93. Lv, Y., et al., Ultrasound-Triggered Destruction of Folate-Functionalized Mesoporous Silica Nanoparticle-Loaded Microbubble for Targeted Tumor Therapy. Adv Healthc Mater, 2017. 6(18).
    94. Duo, Y., et al., CX-5461-loaded nucleolus-targeting nanoplatform for cancer therapy through induction of pro-death autophagy. Acta Biomater, 2018. 79: p. 317-330.
    95. He, X., et al., Sequentially Triggered Nanoparticles with Tumor Penetration and Intelligent Drug Release for Pancreatic Cancer Therapy. Adv Sci (Weinh), 2018. 5(5): p. 1701070.
    96. Lu, Z., et al., A size-shrinkable nanoparticle-based combined anti-tumor and anti-inflammatory strategy for enhanced cancer therapy. Nanoscale, 2018. 10(21): p. 9957-9970.
    97. Roncato, F., et al., Improvement and extension of anti-EGFR targeting in breast cancer therapy by integration with the Avidin-Nucleic-Acid-Nano-Assemblies. Nat Commun, 2018. 9(1): p. 4070.
    98. Lewis Phillips, G.D., et al., Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res, 2008. 68(22): p. 9280-90.
    99. Masters, J.C., et al., Clinical toxicity of antibody drug conjugates: a meta-analysis of payloads. Invest New Drugs, 2018. 36(1): p. 121-135.
    100. Mahalingaiah, P.K., et al., Potential mechanisms of target-independent uptake and toxicity of antibody-drug conjugates. Pharmacol Ther, 2019.
    101. Schieber, C., et al., Conjugation of transferrin to azide-modified CdSe/ZnS core-shell quantum dots using cyclooctyne click chemistry. Angew Chem Int Ed Engl, 2012. 51(42): p. 10523-7.
    102. Shen, Y., et al., Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am J Cancer Res, 2018. 8(6): p. 916-931.
    103. Aruffo, A., et al., CD44 is the principal cell surface receptor for hyaluronate. Cell, 1990. 61(7): p. 1303-13.
    104. Takahashi, S., et al., The RGD motif in fibronectin is essential for development but dispensable for fibril assembly. J Cell Biol, 2007. 178(1): p. 167-78.
    105. Bahrami, B., et al., Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy. Tumour Biol, 2015. 36(8): p. 5727-42.
    106. Evans, J.C., et al., Formulation and Evaluation of Anisamide-Targeted Amphiphilic Cyclodextrin Nanoparticles To Promote Therapeutic Gene Silencing in a 3D Prostate Cancer Bone Metastases Model. Mol Pharm, 2017. 14(1): p. 42-52.
    107. Mansoori, G.A., K.S. Brandenburg, and A. Shakeri-Zadeh, A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications. Cancers (Basel), 2010. 2(4): p. 1911-28.
    108. Akbarzadeh, A., et al., Liposome: classification, preparation, and applications. Nanoscale Res Lett, 2013. 8(1): p. 102.
    109. James, N.D., et al., Liposomal doxorubicin (Doxil): an effective new treatment for Kaposi's sarcoma in AIDS. Clin Oncol (R Coll Radiol), 1994. 6(5): p. 294-6.
    110. Barenholz, Y., Doxil(R)--the first FDA-approved nano-drug: lessons learned. J Control Release, 2012. 160(2): p. 117-34.
    111. Batist, G., et al., Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol, 2001. 19(5): p. 1444-54.
    112. Blade, J., et al., Efficacy and safety of pegylated liposomal Doxorubicin in combination with bortezomib for multiple myeloma: effects of adverse prognostic factors on outcome. Clin Lymphoma Myeloma Leuk, 2011. 11(1): p. 44-9.
    113. Porche, D.J., Liposomal doxorubicin (Doxil). J Assoc Nurses AIDS Care, 1996. 7(2): p. 55-9.
    114. Al-Jamal, W.T. and K. Kostarelos, Liposome-nanoparticle hybrids for multimodal diagnostic and therapeutic applications. Nanomedicine (Lond), 2007. 2(1): p. 85-98.
    115. Waterhouse, D.N., et al., A comparison of liposomal formulations of doxorubicin with drug administered in free form: changing toxicity profiles. Drug Saf, 2001. 24(12): p. 903-20.
    116. Jain, R.K., Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science, 2005. 307(5706): p. 58-62.
    117. Demoy, M., et al., In vitro evaluation of nanoparticles spleen capture. Life Sci, 1999. 64(15): p. 1329-37.
    118. Ishida, T., et al., Spleen plays an important role in the induction of accelerated blood clearance of PEGylated liposomes. J Control Release, 2006. 115(3): p. 243-50.
    119. Verhoef, J.J.F. and T.J. Anchordoquy, Questioning the use of PEGylation for drug delivery. Drug Delivery and Translational Research, 2013. 3(6): p. 499-503.
    120. Filonov, G.S., et al., Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat Biotechnol, 2011. 29(8): p. 757-61.
    121. Rivest, V., et al., Novel liposomal formulation for targeted gene delivery. Pharm Res, 2007. 24(5): p. 981-90.
    122. Shibata, H., C. Yomota, and H. Okuda, Simultaneous determination of polyethylene glycol-conjugated liposome components by using reversed-phase high-performance liquid chromatography with UV and evaporative light scattering detection. AAPS PharmSciTech, 2013. 14(2): p. 811-7.
    123. Koren, E., et al., Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity. J Control Release, 2012. 160(2): p. 264-73.
    124. Allen, T.M., P. Sapra, and E. Moase, Use of the post-insertion method for the formation of ligand-coupled liposomes. Cell Mol Biol Lett, 2002. 7(3): p. 889-94.
    125. Priwitaningrum, D.L., et al., Tumor stroma-containing 3D spheroid arrays: A tool to study nanoparticle penetration. J Control Release, 2016. 244(Pt B): p. 257-268.
    126. Alhareth, K., et al., HPLC quantification of doxorubicin in plasma and tissues of rats treated with doxorubicin loaded poly(alkylcyanoacrylate) nanoparticles. J Chromatogr B Analyt Technol Biomed Life Sci, 2012. 887-888: p. 128-32.
    127. Sarko, D., et al., The pharmacokinetics of cell-penetrating peptides. Mol Pharm, 2010. 7(6): p. 2224-31.
    128. Chen, C.W., et al., Novel RGD-lipid conjugate-modified liposomes for enhancing siRNA delivery in human retinal pigment epithelial cells. Int J Nanomedicine, 2011. 6: p. 2567-80.
    129. Bartczak, D., et al., Exocytosis of peptide functionalized gold nanoparticles in endothelial cells. Nanoscale, 2012. 4(15): p. 4470-2.
    130. Oh, N. and J.H. Park, Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine, 2014. 9 Suppl 1: p. 51-63.
    131. Dalal, C. and N.R. Jana, Multivalency Effect of TAT-Peptide-Functionalized Nanoparticle in Cellular Endocytosis and Subcellular Trafficking. J Phys Chem B, 2017. 121(14): p. 2942-2951.
    132. Soenen, S.J., et al., The Cellular Interactions of PEGylated Gold Nanoparticles: Effect of PEGylation on Cellular Uptake and Cytotoxicity. Particle & Particle Systems Characterization, 2014. 31(7): p. 794-800.
    133. Duan, Z., et al., Cell-penetrating peptide conjugates to enhance the antitumor effect of paclitaxel on drug-resistant lung cancer. Drug Deliv, 2017. 24(1): p. 752-764.
    134. Miao, L., C.M. Lin, and L. Huang, Stromal barriers and strategies for the delivery of nanomedicine to desmoplastic tumors. J Control Release, 2015. 219: p. 192-204.
    135. Dull, R.O., et al., Lung endothelial heparan sulfates mediate cationic peptide-induced barrier dysfunction: a new role for the glycocalyx. Am J Physiol Lung Cell Mol Physiol, 2003. 285(5): p. L986-95.
    136. Smith, N.R., et al., Tumor stromal architecture can define the intrinsic tumor response to VEGF-targeted therapy. Clin Cancer Res, 2013. 19(24): p. 6943-56.
    137. Miao, L., et al., The Binding Site Barrier Elicited by Tumor-Associated Fibroblasts Interferes Disposition of Nanoparticles in Stroma-Vessel Type Tumors. ACS Nano, 2016.
    138. Montet, X., et al., Multivalent effects of RGD peptides obtained by nanoparticle display. J Med Chem, 2006. 49(20): p. 6087-93.
    139. Elias, D.R., et al., Effect of ligand density, receptor density, and nanoparticle size on cell targeting. Nanomedicine, 2013. 9(2): p. 194-201.
    140. Rejman, J., A. Bragonzi, and M. Conese, Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol Ther, 2005. 12(3): p. 468-74.
    141. Kunjachan, S., et al., Passive versus active tumor targeting using RGD- and NGR-modified polymeric nanomedicines. Nano Lett, 2014. 14(2): p. 972-81.
    142. McKee, T.D., et al., Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Res, 2006. 66(5): p. 2509-13.
    143. Miao, L. and L. Huang, Exploring the tumor microenvironment with nanoparticles. Cancer Treat Res, 2015. 166: p. 193-226.
    144. Feig, C., et al., Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A, 2013. 110(50): p. 20212-7.
    145. Li, J., Y. Yang, and L. Huang, Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor. J Control Release, 2012. 158(1): p. 108-14.
    146. Guo, S., et al., Co-delivery of cisplatin and rapamycin for enhanced anticancer therapy through synergistic effects and microenvironment modulation. ACS Nano, 2014. 8(5): p. 4996-5009.
    147. Gore, J. and M. Korc, Pancreatic cancer stroma: friend or foe? Cancer Cell, 2014. 25(6): p. 711-2.
    148. Ozdemir, B.C., et al., Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell, 2014. 25(6): p. 719-34.
    149. Rhim, A.D., et al., Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell, 2014. 25(6): p. 735-47.
    150. Sugahara, K.N., et al., Tissue-Penetrating Delivery of Compounds and Nanoparticles into Tumors. Cancer Cell, 2009. 16(6): p. 510-520.
    151. Teesalu, T., et al., C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(38): p. 16157-16162.
    152. Sun, Q., et al., Enhancing Tumor Penetration of Nanomedicines. Biomacromolecules, 2017. 18(5): p. 1449-1459.
    153. Juweid, M., et al., Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res, 1992. 52(19): p. 5144-53.
    154. Weinstein, J.N. and W. van Osdol, Early intervention in cancer using monoclonal antibodies and other biological ligands: micropharmacology and the "binding site barrier". Cancer Res, 1992. 52(9 Suppl): p. 2747s-2751s.
    155. Cheng, Z., et al., Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science, 2012. 338(6109): p. 903-10.
    156. Stylianopoulos, T., et al., Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys J, 2010. 99(5): p. 1342-9.
    157. Zhang, B., et al., Targeting fibronectins of glioma extracellular matrix by CLT1 peptide-conjugated nanoparticles. Biomaterials, 2014. 35(13): p. 4088-98.
    158. Nam, J.M., et al., Breast cancer cells in three-dimensional culture display an enhanced radioresponse after coordinate targeting of integrin alpha5beta1 and fibronectin. Cancer Res, 2010. 70(13): p. 5238-48.
    159. Zhou, R., et al., Pericellular matrix enhances retention and cellular uptake of nanoparticles. J Am Chem Soc, 2012. 134(32): p. 13404-9.
    160. Sarrazin, S., W.C. Lamanna, and J.D. Esko, Heparan Sulfate Proteoglycans. Cold Spring Harbor Perspectives in Biology, 2011. 3(7).
    161. Duchesne, L., et al., Transport of fibroblast growth factor 2 in the pericellular matrix is controlled by the spatial distribution of its binding sites in heparan sulfate. PLoS Biol, 2012. 10(7): p. e1001361.
    162. Sun, C., et al., Selectivity in glycosaminoglycan binding dictates the distribution and diffusion of fibroblast growth factors in the pericellular matrix. Open Biol, 2016. 6(3).
    163. Gotthardt, M., et al., Indication for different mechanisms of kidney uptake of radiolabeled peptides. J Nucl Med, 2007. 48(4): p. 596-601.
    164. Abassi, Z., et al., Involvement of heparanase in the pathogenesis of acute kidney injury: nephroprotective effect of PG545. Oncotarget, 2017. 8(21): p. 34191-34204.
    165. Campeiro, J.D., et al., Long term safety of targeted internalization of cell penetrating peptide crotamine into renal proximal tubular epithelial cells in vivo. Sci Rep, 2019. 9(1): p. 3312.
    166. Hoshyar, N., et al., The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine, 2016. 11(6): p. 673-692.
    167. Tsoi, K.M., et al., Mechanism of hard-nanomaterial clearance by the liver. Nature Materials, 2016. 15(11): p. 1212-1221.
    168. Rodriguez, P.L., et al., Minimal "Self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science, 2013. 339(6122): p. 971-5.

    QR CODE