簡易檢索 / 詳目顯示

研究生: 蔡尚宏
Tsai, Shang-Hong
論文名稱: 銅銦鎵硒太陽能電池模組之串聯電阻量測與分析
Series resistance of CIGS solar cell module measurement and analysis
指導教授: 甘炯耀
Gan, Jon-Yiew
口試委員: 賴志煌
徐偉倫
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 77
中文關鍵詞: 銅銦鎵硒模組太陽能電池串聯電阻
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 造成CIGS模組效率低落的其中一個主因在於Rs過高,經過擬合計算後,我們發現CIGS 模組之Rs高達2.45 Ω-cm^2,為了深入了解串聯電阻來源,本實驗藉由模擬計算推導並驗證TCO的串聯電阻計算公式,另外再製作AZO/iZO/Mo以及AZO/iZO/MoSe2/Mo 的接觸電阻量測結構,期望找出P2接面在有無MoSe2時的ρc落差。
    本實驗透過Matlab以及PV lighthouse網站提供的擬合工具,計算了電池模組在不同長度S 時的RS,並繪製成圖以尋找其關係。至於在ρc的方面,我們則透過微影製程以及硒化處理,分別在兩種試片上做出Kelvin及TLM結構,用以量測其ρc。
    經實驗後我們得到透明導電層的Rs計算公式約為Rs=1/3 x ρsq × S^2;此外,
    AZO/iZO/MoSe2/Mo的ρc約為5.74*10^-2 Ω-cm^2,而AZO/iZO/Mo則1.31*10^-3 Ω-cm^2。如果能夠減少MoSe2在P2接面的影響,便可降低CIGS模組的串聯電阻,進而提高電池效率。


    One of the challenges of CIGS solar cell nowadays is that module efficiency is a lot lower than single cell efficiency. This is mainly caused by high RS of cell module. In order to find out where Rs comes from, we used simulating calculation to derive a
    formula that can describe the relationship between Rs and cell length S. Also, we made devices on both AZO/iZO/Mo and AZO/iZO/MoSe2/Mo samples to measure ρc difference with and without MoSe2.
    For simulation, we used Matlab and fitting tools from PV lighthouse. We drew I-V curves under different S and calculated their Rs. As for ρc, we created Kelvin and TLM structures on two kinds of sample by lithography and selenization. Both of the
    structure could help us study ρc. In result, we confirm the formula of Rs in TCO is Rs= 1/3 x ρsq × S^2. Besides that, we
    found out that ρc of AZO/iZO/MoSe2/Mo is about 5.74*10^-2 Ω-cm^2, while ρc of AZO/iZO/Mo is about 1.31*10^-3 Ω-cm^2.

    摘要 I Abstract II 第一章、 前言1 第二章、 文獻回顧4 2.1 太陽能電池介紹4 2.1.1 發電原理4 2.1.2 太陽能電池等效電路4 2.1.3 光電曲線7 2.2 CIGS 簡介 9 2.2.1 CIGS 發展史 9 2.2.2 CIGS 電池結構 10 2.2.3 CIGS 模組 13 2.2.4 MoSe2於CIGS 電池中的影響13 2.2.5 MoSe2的製備 19 2.3 常見量測技術介紹20 2.3.1 四點探針20 2.3.2 片電阻20 2.3.3 Van der Pauw method 23 2.3.4 Transfer length method 24 2.3.5 Kelvin structure 25 第三章、 TCO之Rs 計算29 3.1 Rs 擬合計算 29 3.1.1 CIGS 模組擬合 29 3.1.2 TCO 內部Rs 計算流程 31 3.2 Rs 擬合計算結果 37 3.2.1 模組擬合37 3.2.2 TCO內部Rs計算結果37 第四章、 P2 接面RC 41 4.1 Rc 量測結構 41 4.1.1 微影製程 41 4.1.2 元件製作 44 4.2 P2 接面Rc 分析 49 4.2.1 元件製作探討49 4.2.2 P2 接面電性結果分析 58 第五章、 結論70 附錄71 參考資料74

    [1] International renewable energy agency. Global levelized cost of electricity from utility-scale renewable power generation technology 2010-2017. Retrieved from
    http://resourceirena.irena.org/gateway/dashboard/?topic=3&subTopic=1065
    [2] National renewable energy laboratory. Best research-cell efficiency chart. (2019). Retrieved from https://www.nrel.gov/.
    [3] T. Kato (June 2016). Recent research progress of high-efficiency CIGS solar cell in Solar Frontier. Presented at the 32nd EU PVSEC, Munich, Germany.
    [4] J. Ramanujam, U. P. Singhb (April 2017). Copper indium gallium selenide based solar cells – a review. Energy & environmental science, issue 6, 1306-1319.
    [5] L. L. Kazmerski, F. R. White, G. K. Morgan (1976). Thin-film CuInSe2/CdS heterojunction solar cells, Applied Physics Letters, 29, 268.
    [6] A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, R. Noufi, A. M. Hermann, (1994). High efficiency CuInxGa1-xSe2 solar cells made from (Inx,Ga1-x)2Se3 precursor films, Applied Physics Letters, 65, 198.
    [7] S. P. Grindle, C. W. Smith, S. D. Mittleman (1979). Preparation and properties of CulnS2 thin films produced by exposing rf-sputtered Cu-In films to an H2S atmosphere, Applied Physics Letters, 35, 24.
    [8] V. Alberts, J. Titus, R.W. Birkmire (2004). Material and device properties of single-phase Cu(In,Ga)(Se,S)2 alloys prepared by selenizationysulfurization of metallic alloys, Thin Solid Films, 451 –452, 207–211.
    [9] M. Ruckh, D. Schmid, M. Kaiser, R. Schaffler, T. Walter, H.W. Schock (1996). Influence of substrate on the electrical properties of Cu(In,Ga)Se2 thin films, Solar Energy Material and Solar Cells, 41/42, 335-343.
    [10] Z. Gao, M. Zhao, D. Zhuang, E. Fu, X. Li, L. Ouyang, L. Gao, R. Sun, K. Kimura, K. Nakajima (2015). Study on the performance of Tungsten-Titanium alloy film as a diffusion barrier for iron in a flexible CIGS solar cell, Solar Energy, 120, 357-362.
    [11] J. H. Scofield, A. Duda, D. Albin, B. L. Ballardb, P. K. Predeckib (1995). Sputtered molybdenum bilayer back contact for copper indium diselenide - based polycrystalline thin-film solar cells, Thin Solid Films, 260, 26-31.
    [12] J. H. Yoon, S. Cho, W. M. Kim, J. K. Park, Y. J. Baik, T. S. Lee, T. Y. Seong , J. H. Jeong (2011). Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity, Solar Energy Materials and Solar Cells, 95, 2959-2964.
    [13] N. Kohara, S. Nishiwaki, Y. Hashimoto, T. Negami, T. Wada (2001). Electrical properties of the Cu(In,Ga)Se2/MoSe2/Mo structure, Solar Energy Materials and Solar Cells, 67, 209-215.
    [14] B. A. Thakar (2011). Investigation of TMDCs and use in solar cell.
    [15] J.L. Funk, (2013). Technology Change and the Rise of New Industries. Stanford: Stanford University Press.
    [16] J. H. Yoon, J. H. Kim, W. M. Kim, J. K. Park, Y. J. Baik, T. Y. Seong, J. H. Jeong (2014). Electrical properties of CIGS/Mo junctions as a function of MoSe2 orientation and Na doping, Progress in Photovoltaics: Research and Applications, 22, 90-96.
    [17] Y. J. Liu, C. Y. Ou, C. H. Lu (2018). Effects of Mo films prepared via different sputtering conditions on the formation of MoSe2 during selenization, Journal of Alloys and Compounds, 747, 621-628.
    [18] M. Oertel, S. Götz, J. Cieslak, J. Haarstrich, H. Metzner, W. Wesch (2011). Measurement of the zinc oxide–molybdenum specific contact resistance for applications in Cu(In,Ga)Se2-technology, Thin Solid Films, 519, 7545-7548.
    [19] J. H. Yoon, J. K. Park, W. M. Kim, J. W. Lee, H. Pak, J. H. Jeong (2015). Characterization of efficiency-limiting resistance losses in monolithically integrated Cu(In,Ga)Se2 solar modules, Scientific Reports, 5.
    [20] M. Bouttemy, P. Tran-Van, I. Gerard, T. Hildebrandt, A. Causier, J.L. Pelouard, G. Dagher, Z. Jehl, N. Naghavi, G. Voorwinden, B. Dimmler, M. Powalla, J.F. Guillemoles, D. Lincot, A. Etcheberry (2011). Thinning of CIGS solar cells: Part I: Chemical processing in acidic bromine solutions, Thin Solid Films, 519, 7207-7211.
    [21] B. B. Wang, K. Zheng, X. X. Zhong, D. Gao, B. Gao (2017). Synthesis and structure of molybdenum diselenide nanosheets produced from MoO3 and Se powders, Journal of Alloys and Compounds, 695, 27-34.
    [22] N. Neugebohrn, M. S. Hammer, M. H. Sayed, P. Michalowski, C. Stroth, J. Parisi, M. Richter (2017). Investigation of the resistivity of molybdenum diselenide prepared with varied sodium content, Journal of Alloys and Compounds, 725, 69-76.
    [23] D. K. Schroder (2006). Semiconductor Material and Device Characterization. Third Edition. New Jersey: John Wiley & Sons.
    [24] L. J. van der Pauw (1958). A method of measuring specific resistivity and Hall effect of discs of arbitrary shape, Philips Research Reports, 13, 1-9.
    [25]K. Nagashio, T.Nishimura, K.Kita, A. Toriumi (2010). Contact resistivity and current flow path at metal/graphene contact, Applied Physics Letters, 97.
    [26] K. McIntosh, M. Abbott, B. Sudbury. PV Lighthouse. Retrieved from https://www.pvlighthouse.com.au/equivalent-circuit
    [27] 國立交通大學奈米中心。檢自http://www.nfc.nctu.edu.tw/home.htm

    QR CODE