簡易檢索 / 詳目顯示

研究生: 林弘偉
Hon Way Lin
論文名稱: 氮化銦磊晶薄膜及量子點材料之研究
Study on the Growth and Properties of InN Epitaxial Layers and Quantum Dots
指導教授: 果尚志
S. Gwo
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 57
中文關鍵詞: 氮化銦分子束磊晶量子點
外文關鍵詞: InN, MBE, quantum dots
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本篇論文研究主題為利用分子束磊晶法(MBE)成長出高品質氮化銦薄膜以及氮化銦量子點,並分析其特性。在氮化銦薄膜方面,我們在Si(111)基板上成長出高品質單晶且為二維成長之氮化銦薄膜,並利用反射式高能量電子繞射系統(RHEED)在成長時做現場監控以判斷薄膜之成長好壞,成長完之樣品,我們利用原子力顯微鏡(AFM)做表面形貌之掃描,並利用X光繞射(X-ray diffraction)以及拉曼光譄(Raman spectrum)量測以確定薄膜之結構與特性與結晶品質。我們以霍爾量測(Hall measurement)決定氮化銦薄膜內的載子遷移率以及載子濃度,諸多量測均確定了我們成長出之氮化銦薄膜有良好的品質。論文內也討論利用不同緩衝層所成長出之氮化銦薄膜,並比較兩者之間的特性有何不同(表面形貌、結構特性、電性、極性等);而利用光致激發螢光光譜量測(photoluminescence spectrum)實驗則確定了氮化銦薄膜的基本能隙值應位於~0.7 eV附近,這個值與以往被認定的值(1.8-2.0 eV)有很大的出入,文中也討論造成此不同的發光波段的成因。
      對於氮化銦量子點的研究,我們利用了兩種不同成長方式:Stranski-Krostanov成長模式與熱退火成長模式,能成長出密度可調的氮化銦量子點,文中將研究不同的成長方法對量子點大小及其分布的影響。


    第一章 簡介....................................1 第二章 儀器介紹及原理 2.1 電漿輔助式分子束磊晶系統................6 2.1.1 系統介紹..........................6 2.1.2 工作原理..........................8 2.2 反射式高能量電子繞射...................10 2.3 拉曼光譜...............................15 2.4 X光繞射................................17 第三章 氮化銦薄膜之研究 3.1 氮化銦薄膜之成長介紹...................19 3.1.1 基板選擇與成長結果...............19 3.1.2 成長氮化銦薄膜...................22 3.2 氮化銦薄膜之分析與討論.................24 3.2.1 表面形貌分析.....................24 3.2.2 晶體結構分析.....................27 3.2.3 光學性質分析.....................31 3.2.4傳輸特性量測與分析................35 3.2.5 極性判斷.........................37 第四章 氮化銦量子點之研究 4.1 量子點的形成...........................39 4.2 氮化銦量子點的成長介紹 4.2.1 文獻回顧.........................42 4.2.2 在Si(111)基板上利用Stranski-Krastanov模式成長氮化銦量子點..................................44 4.2.3 在GaN(0001)模板上利用熱退火模式成長氮化銦量子點............................................44 4.3 氮化銦量子點之分布統計.................47 第五章 結論...................................52 參考文獻......................................54

    [1] R. Juza and H. Hahn, Z. Anorg. Allg. Chem. 239, 282 (1938).

    [2] Hai Lu, William J. Schaff, Lester F. Eastman, J. Wu, Wladek Walukiewicz, Volker Cimalla and Oliver Ambacher, Appl. Phys. Lett. 83, 1136 (2003)

    [3] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett. 81, 1246 (2002).

    [4] V. Y. Davydov et al., Phys. Status Solidi B 229, R1 (2002)

    [5] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).

    [6] T. L. Tansley and C. P. Foley, J. Appl. Phys. 59, 3241 (1986)

    [7] S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992).

    [8] V. W. L. Chin, T. L. Tansley, and T. Osotchan, J. Appl. Phys. 75, 7365 (1994).

    [9] B. E. Foutz, S. K. O’Leary, M. S. Shur, and L. F. Eastman, J. Appl. Phys. 85, 7727 (1999).

    [10] A. Yamamoto, M. Tsujino, M. Ohkubo, and A. Hashimoto, J. Cryst.Growth 137, 415 (1994).

    [11] Y. C. Pan, W. H. Lee, C. K. Shu, H. C. Lin, C. I. Chiang, H. Chang, D. S. Lin, M. C. Lee, and W. K. Chen, Jpn. J. Appl. Phys., Part 1 38, 645 (1999).

    [12] T. Tsuchiya, H. Yamano, O. Miki, A. Wakahara, and A. Yoshida, Jpn. J.Appl. Phys., Part 1 38, 1884 (1999).

    [13] A. Yamamoto, M. Tsujino, M. Ohkubo, and A. Hashimoto, Sol. Energy Mater. Sol. Cells 35, 53 (1994).

    [14] A. Yamamoto, Y. Yamauchi, T. Ogawa, M. Ohkubo, and A. Hashimoto, Inst. Phys. Conf. Ser. 142, 879 (1996).

    [15] A. Yamamoto, Y. Yamauchi, M. Ohkubo, A. Hashimoto, and T. Saitoh,Solid-State Electron. 41, 149 (1997).

    [16] T. Yodo, H. Ando, D. Nosei, and Y. Harada, Phys. Status Solidi B 228, 21 (2001).

    [17] T. Yodo, H. Yona, H. Ando, D. Nosei, and Y. Harada, Appl. Phys. Lett.80, 968 (2002).

    [18] Hai Lu, William J. Schaff, Jeonghyun Hwang, Hong Wu, Goutam Koley, and Lester F. Eastman, Appl. Phys. Lett. 79, 1489 (2001)

    [19] H. Lu, W. J. Schaff, L. F. Eastman, J. Wu, W. Walukiewicz, K. M. Yu, J.W. Auger III, E. E. Haller, and O. Ambacher, Abstract of the 44th Electronic Material Conference, Santa Barbara, CA (2002)

    [20] V. Y. Davydov et al., Phys. Status Solidi B 230, R4 (2002).

    [21] M. Hori, K. Kano, T. Yamaguchi, Y. Saito, T. Araki, Y. Nanishi, N. Teraguchi, and A. Suzuki, Phys. Status Solidi B 234, 750 (2002).

    [22] V. Y. Davydov et al., Phys. Status Solidi B 234, 787 (2002).

    [23] Saito, H. Harima, E. Kurimoto, T. Yamaguchi, N. Teraguchi, A. Suzuki,T. Araki, and Y. Nanishi, Phys. Status Solidi B 234, 796 (2002).

    [24] T. Miyajima et al., Phys. Status Solidi B 234, 801 (2002)

    [25] C. Nörenberg, R.A. Oliver, M.G. Martin, L. Allers ,M.R. Castell, and G.A.D. Briggs, phys. stat. sol. (a) 194, No. 2, 536 (2002)

    [26] Y. G. Cao, M. H. Xie, Y. Liu, Y. F. Ng, and H. S. Wu, Appl. Phys. Lett., Vol. 83, No. 25, (2003)

    [27] D. J. Eaglesham and M. Cerullo,Phys. Rev. Lett. 64, 1943 (1990)

    [28] D. Vanderbilt and L. K. Wickham, in Evolution of Thin-Film and Surface Microstructure, Vol. 202 of MRS Proceedings, edited by C. V. Thompson, J. Y. Tsao, and D. J. Srolovitz (MRS, Pittsburgh, 1991), pp. 555-560.

    [29] Masataka HIGASHIWAKI and Toshiaki MATSUI, Jpn. J. Appl. Phys. Vol. 41, L540 (2002).

    [30] C. J. Lu and L. A. Bendersky, Hai Lu and William J. Schaff, Appl. Phys. Lett., Vol. 83, No. 14, 2817 (2003)

    [31] J. W. Trainor and K. Rose, J Electron. Mater. 3, 821 (1974)

    [32] C.-L. Wu, J.-C. Wang, M.-H. Chan, T. T. Chen, and S. Gwo, Appl. Phys. Lett. 83, 4530 (2003).

    [33] H.-J. Kwon, Y.-H. Lee, O. Miki, H. Yamano, and A. Yoshida, Appl. Phys. Lett. 69, 937 (1996).

    [34] W. K. Chen, H. C. Lin, Y. C. Pan, J. Ou, C. K. Shu, W. H. Chen, and M.C. Lee, Jpn. J. Appl. Phys., Part 1 37, 4870 (1998)

    [35] J. S. Dyck, K. Kash, K. Kim, W. R. L. Lambrecht, C. C. Hayman, A.

    [36] Argoitia, M. T. Grossner, W. L. Zhou, and J. C. Angus, Mater. Res. Soc. Symp. Proc. 482, 549 (1998).

    [37] Y. C. Pan, W. H. Lee, C. K. Shu, H. C. Lin, C. I. Chiang, H. Chang, D. S. Lin, M. C. Lee, and W. K. Chen, Jpn. J. Appl. Phys., Part 1 38, 645 (1999).

    [38] T. Inushima, T. Shiraishi, V. Y. Davydov, Solid State Commun. 110, 491 (1999).

    [39] V. Y. Davydov et al., Appl. Phys. Lett. 75, 3297 (1999).

    [40] V. Y. Davydov et al., Phys. Status Solidi B 216, 779 (1999).

    [41] V. V. Mamutin et al., Phys. Status Solidi A 176, 247 (1999).

    [42] G. Kaczmarczyk et al., Appl. Phys. Lett. 76, 2122 (2000).

    [43] T. Inushima, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, T. Sakon, M. Motokawa, and S. Ohoya, J. Cryst. Growth 227–228, 481 (2001).

    [44] J. Aderhold, V. Yu. Davydov, F. Fedler, H. Klausing, D. Mistele, T. Rotter, O. Semchinova, J. Stemmer, and J. Graul, J. Cryst. Growth 222, 701 (2001).

    [45] E. Kurimoto, H. Harima, A. Hashimoto, and A. Yamamoto, Phys. Status Solidi B 228, 1 (2001).

    [46] Y. Saito, H. Harima, E. Kurimoto, T. Yamaguchi, N. Teraguchi, A. Suzuki, T. Araki, and Y. Nanishi, Phys. Status Solidi B 234, 796 (2002).

    [47] K. Xu and A. Yoshikawa, Appl. Phys. Lett. 83, (2003)

    [48] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, J. Appl. Phys. 94, 4457 (2003).

    [49] E. Kurimoto, M. Hangyo, H. Harima, M. Yoshimoto, T. Yamaguchi, T. Araki, Y. Nanishi, K. Kisoda, Appl. Phys. Lett. 84, 212 (2004)

    [50] S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang and J.-T. Hsu, Appl. Phys. Lett. 84, 3765 (2004)

    [51] Herman, Marian A. Molecular beam epitaxy : fundamentals and current status, Springer-Verlag (1989)

    [52] Braun, Wolfgang, Applied RHEED :reflection high-energy electron diffraction during crystal growth, Springer (1999)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE