研究生: |
蔡宗閔 Tsai, Chung-Min |
---|---|
論文名稱: |
鈷磷化鎢奈米篩催化合成氧化銅奈米線之研究 Synthesis of cupric oxide nanowire catalyzed by a cobalt tungsten phosphide nanofilter |
指導教授: |
游萃蓉
Yew, Tri-Rung |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 77 |
中文關鍵詞: | 氧化銅奈米線 、鈷磷化鎢 、電阻率 、場發射 、成長機制 |
外文關鍵詞: | CuO nanowires, CoWP, resistivity, field-emission, growth mehanism |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文對於「自組裝單晶氧化銅奈米線(CuO nanowires)」提出一種新的合成方式,利用此一方法,可將氧化銅奈米線成長於鍍有銅基多層金屬膜(Cu-based multilayer)之二氧化矽/矽基板(SiO2/Si-substrate)的表面,有利於未來相關元件之製造與應用。實施此技術之關鍵,是使用無電鍍鈷磷化鎢(electroless CoWP)薄膜做為一種奈米篩(nanofilter),用以催化氧化銅奈米線於低溫空氣鍛燒製程(400 C, 1 atm)中合成;此種無電鍍鈷磷化鎢薄膜,常被用來作為一種銅的擴散阻隔層。
氧化銅奈米線合成條件之最佳化,是經過一系列實驗設計與基礎研究所達到的;其中,特別針對鈷磷化鎢薄膜的催化效應、製程時間效應、溫度效應,以及製程氣體壓力效應做探討。具有單斜晶(monoclinic)結晶性之單晶氧化銅奈米線,可藉由120分鐘之低溫空氣鍛燒(400 C, 1 atm)成功的被合成出來(奈米線直徑:10 - 50 nm、長度:~7 um、密度:~109 NWs/cm2)。
本研究中,使用場發射掃描式電子顯微鏡(FESEM)、原子力顯微鏡(AFM)、X光繞射儀(XRD),以及穿透式電子顯微鏡(TEM),針對氧化銅奈米線與鈷磷化鎢薄膜表面之物理性質進行分析;另一方面,更探討氧化銅奈米線之電性質與場發射特性。經由電性量測發現,本研究所合成之氧化銅奈米線呈現電阻特性,並具有比先前之研究報導相對低的電阻率(resistivity),約在10 - 60 ohm cm之間。場發射特性量測也指出,此氧化銅奈米線具有低的啟動電場(turn-on field)約為4.5 V/um,以及高的場增強因子(field enhancement factor)約為1400。此外,本論文也探討以鈷磷化鎢奈米篩催化合成氧化銅奈米線的成長機制,更嘗試提出一種成長機制模型,提供未來各種奈米線合成研究之參考。
This thesis presents a new approach to synthesize self-aligned, uniform, and single-crystal cupric oxide nanowires (CuO NWs) on Cu-based multilayer on SiO2/Si for future device fabrication. The key is to introduce electroless cobalt tungsten phosphide (CoWP), which is normally used as a Cu diffusion barrier, as the nanofilter to catalyze CuO-nanowire synthesis simply by the calcination at 400 C in air (1 atm).
The CuO-nanowire syntheses were optimized by series of fundamental investigation and experimental designs, especially on the catalytic effect of CoWP, growth time, growth temperature, and process pressure. The single-crystal monoclinic CuO nanowires synthesized exhibit a diameter of 10 - 50 nm, the length up to 7 um, a density of 109 NWs/cm2, and an average growth rate of 50 nm/min, for the samples calcined for 120 min.
The physical properties of CuO nanowires and CoWP capping layer were analyzed by field-emission scanning electron microscope (FESEM), atomic force microscope (AFM), X-ray diffractometer (XRD), and transmission electron microscope (TEM) equipped with an energy dispersive spectrometer (EDS).
In addition, the electrical and field-emission (FE) properties were also measured and discussed in this work. The individual as-synthesized CuO nanowire exhibits ohmic behavior with a resistivity of 10 - 60 ohm cm, which is relatively lower than those reported. From the measured field-emission properties of CuO nanowires on SiO2/Si-substrate, a low turn-on field of 4.5 V/um and high field enhancement factor of about 1400 have been achieved.
Besides, based on the results of FESEM, AFM, cross-sectional TEM, and XRD analyses, the possible catalytic growth mechanism of CuO nanowires was also discussed. The vapor-solid (VS) mechanism is most likely responsible for the CuO-nanowire synthesis of this work. The model of growth mechanism for CuO-nanowire synthesis catalyzed by CoWP nanofilter has also been proposed in this study.
[1] Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H, Adv. Mater. 2003;15:353.
[2] Tian ZR, Voigt JA, Liu J, Mckenzie B, Mcdermott MJ. J. Am. Chem. Soc. 2002;124:12954.
[3] Wang W, Geng Y, Yan P, Liu F, Xie Y, Qian Y. J. Am. Chem. Soc. 1999;121:4062.
[4] Wang S, Yang S, Dai ZR, Wang ZL. Phys. Chem. Chem. Phys. 2001;123:11500.
[5] Yu SH, Cölfen H, Antonietti M. Adv. Mater. 2003;15:133.
[6] Ghijsen J, Tjeng LH, van Elp J, Eskes H, Westerink J, Sawatzky GA. Phys. Rev. B 1988;38:11322.
[7] Koffyberg FP, Benko FA. J. Appl. Phys. 1982;53:1173.
[8] Ito T, Yamaguchi H, Masumi T, Adachi S. J. Phys. Soc. Jpn. 1998;67:3304.
[9] Bendnorz JG, Muller KA. Z. Phys. B: Conens. Matter 1986;64:189.
[10] MacDonald AH. Nature 2001;414:409.
[11] Forsyth JB, Brown PJ, Wanklyn BM. J. Phys. C: Solid State Phys. 1998;21:2917.
[12] Sukhorukov YP, Loshkareva NN, Samokhvalov AA, Naumov SV, Moskvin AS, Ovchinnikov AS. J. Magn. Magn. Mater. 1998;183:356.
[13] Terakura K, Oguchi T, Williams AR, Kubler J. Phys. Rev. B 1984;30:4734.
[14] Norman MR, Freeman AJ. Phys. Rev. B 1986;33:8896.
[15] Switzer JA, Kothari HM, Poizot P, Nakanishi S, Bohannan EW. Nature 2003;425:490.
[16] Xu Y, Chen D, Jiao X. J. Phys. Chem. B 2005;109:13561.
[17] Hsieh CT, Chen JM, Lin HH, Shih HC. Appl. Phys. Lett. 2003;83:3383.
[18] Zhu YW, Yu T, Cheong FC, Xu XJ, Lim CT, Tan VBC, Thong JTL, Sow CH. Nanotech. 2005;16:88.
[19] Zhu YW, Sow CH, Thong JTL. J. Appl. Phys. 2007;102:114302.
[20] Wang C, Fu XQ, Xue XY, Wang YG, Wang TH. Nanotech. 2007;18:145506.
[21] Ramıŕez-Ortiz J, Ogura T, Medina-Valtierra J, Acosta-Ortiz SE, Bosch P, de los Reyes JA, Lara VH. Appl. Surf. Sci. 2001;174:177.
[22] Wang H, Xu JZ, Zhu JJ, Chen HY. J. Cryst. Growth 2002;244:88.
[23] Wang W, Zhan Y, Wang X, Liu Y, Zheng C, Wang G. Mater. Res. Bull. 2002;37:1093.
[24] Gao XP, Bao JL, Pan GL, Zhu HY, Huang PX, Wu F, Song DY. J. Phys. Chem. B 2004;108:5547.
[25] Anandan S, Wen X, Yang S. Mater. Chem. Phys. 2005;39:35.
[26] Chang Y, Zeng HC. Cry. Growth & Design 2004;4:397.
[27] Du GH, Van Tendeloo G. Phys. Chem. Lett. 2004;393:64.
[28] Wang W, Varghese OK, Ruan C, Paulose M, Grimes¬ CA. J. Mater. Res. 2003;18:2756.
[29] Wu HQ, Wei XW, Shao MW, Gu JS, Qu MZ. Chem. Phys. Lett. 2002;364:152.
[30] Yao WT, Yu SH, Zhou Y, Jiang J, Wu QS, Zhang L, Jiang J. J. Phys. Chem. B 2005;109:14011.
[31] Xu C, Liu Y, Xu G, Wang G. Mater. Res. Bull. 2002;37:2365.
[32] Wang S, Huang Q, Wen X, Li XY, Yang S. Phys. Chem. Chem. Phys. 2002;4:3425.
[33] Jiang XC, Herricks T, Xia YN. Nano Lett. 2002;2:1333.
[34] Zhang K, Rossi C, Tenailleau C, Alphonse P, Chane-Ching JY. Nanotech. 2007;18:275607.
[35] Hou HW, Xie Y, Li Q. Cry. Growth & Design 2005;5:201.
[36] Wen X, Zhang W, Yang S. Langmuir 2003;19:5898.
[37] Mei YF, Siu GG, Yang Y, Fu Ricky KY, Hung TF, Chu Paul K, Wu XL. Acta Materialia 2004;52:5051.
[38] Eastman DE. Phys. Rev. B: Solid State 1970;2:1.
[39] Zhu YW, Moo AM, Yu T, Xu XJ, Gao XY, Liu YJ, Lim CT, Shen ZX, Ong CK, Wee ATS, Thong JTL, Sow CH. Chem. Phys. Lett. 2006;419:458.
[40] Zheng XG, Suzuki M, Xu CN. Mater. Res. Bull. 1998;33:605.
[41] DeSisto W, Collins BT, Kershaw R, Dwight K, Wold A. Mater. Res. Bull. 1989;24:1005.
[42] Wu H, Lin D, Pan W. Appl. Phys. Lett. 2006;89:133125.
[43] Murphy EL, Good RH Jr. Phys. Rev. 1956;102:1464.
[44] Xu NS, Chen J, Deng SZ. Appl. Phys. Lett. 2000;76:2463.
[45] Tang CC, Bando Y. Appl. Phys. Lett. 2003;83:659.
[46] Fowler RH, Nordheim LW. Proc. R. Soc. A. 1928;119:173.
[47] Gadzuk JW, Plummer EW. Rev. Mod. Phys. 1973;45:487.
[48] Bonard JM, Salvetat JP, Stöckli T, Forró L, Châtelain A. Appl. Phys. A. 1999;69:245.
[49] Lee CJ, Lee TJ, Lyu SC, Zhang Y, Ruh H, Lee HJ. Appl. Phys. Lett. 2002;81:3648.
[50] Jo SH, Tu Y, Huang ZP, Carnahan DL, Wang DZ, Ren ZF. Appl. Phys. Lett. 2003;82:3520.
[51] Bonard JM, Weiss N, Kind H, Stöckli T, Forró L, Kern K, Châtelain A. Adv. Mater. 2001;13:184.
[52] Edgcombe CJ, Valdrè U. J. Microsc. 2000;203:188.
[53] Pan ZW, Dai ZR, Wang ZL. Science (Washington, D.C.) 2001;291:1947.
[54] Yang PD, Lieber CM. Science (Washington, D.C.) 1996;273:1836.
[55] Gu G, Zheng B, Han WQ, Roth S, Liu J. Nano Lett. 2002;2:849.
[56] Zhang HF, Dohnalkova AC, Wang CM, Young JS, Buck EC, Wang LS. Nano Lett. 2002;2:105.
[57] Hu CK, Gignac L, Rosenberg R, Liniger E, Rubino J, Sambucetti C, Domenicucci A, Chen X, Stamper AK. Appl. Phys. Lett. 2002;81:1782.
[58] Kohn A, Eizenberg M, Shacham-Diamand Y. J. Appl. Phys. 2003;94:38102.
[59] ASM Handbook: Volume 3: Alloy Phase Diagrams, 10th ed; Baker H, ASM International, Materials Park, Ohio, 1992, p.2□140.
[60] Adegboyega GA. Niger. J. Renewable Energy 1990;1:21.