簡易檢索 / 詳目顯示

研究生: 蔡宗閔
Tsai, Chung-Min
論文名稱: 鈷磷化鎢奈米篩催化合成氧化銅奈米線之研究
Synthesis of cupric oxide nanowire catalyzed by a cobalt tungsten phosphide nanofilter
指導教授: 游萃蓉
Yew, Tri-Rung
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 77
中文關鍵詞: 氧化銅奈米線鈷磷化鎢電阻率場發射成長機制
外文關鍵詞: CuO nanowires, CoWP, resistivity, field-emission, growth mehanism
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文對於「自組裝單晶氧化銅奈米線(CuO nanowires)」提出一種新的合成方式,利用此一方法,可將氧化銅奈米線成長於鍍有銅基多層金屬膜(Cu-based multilayer)之二氧化矽/矽基板(SiO2/Si-substrate)的表面,有利於未來相關元件之製造與應用。實施此技術之關鍵,是使用無電鍍鈷磷化鎢(electroless CoWP)薄膜做為一種奈米篩(nanofilter),用以催化氧化銅奈米線於低溫空氣鍛燒製程(400 C, 1 atm)中合成;此種無電鍍鈷磷化鎢薄膜,常被用來作為一種銅的擴散阻隔層。
    氧化銅奈米線合成條件之最佳化,是經過一系列實驗設計與基礎研究所達到的;其中,特別針對鈷磷化鎢薄膜的催化效應、製程時間效應、溫度效應,以及製程氣體壓力效應做探討。具有單斜晶(monoclinic)結晶性之單晶氧化銅奈米線,可藉由120分鐘之低溫空氣鍛燒(400 C, 1 atm)成功的被合成出來(奈米線直徑:10 - 50 nm、長度:~7 um、密度:~109 NWs/cm2)。
    本研究中,使用場發射掃描式電子顯微鏡(FESEM)、原子力顯微鏡(AFM)、X光繞射儀(XRD),以及穿透式電子顯微鏡(TEM),針對氧化銅奈米線與鈷磷化鎢薄膜表面之物理性質進行分析;另一方面,更探討氧化銅奈米線之電性質與場發射特性。經由電性量測發現,本研究所合成之氧化銅奈米線呈現電阻特性,並具有比先前之研究報導相對低的電阻率(resistivity),約在10 - 60 ohm cm之間。場發射特性量測也指出,此氧化銅奈米線具有低的啟動電場(turn-on field)約為4.5 V/um,以及高的場增強因子(field enhancement factor)約為1400。此外,本論文也探討以鈷磷化鎢奈米篩催化合成氧化銅奈米線的成長機制,更嘗試提出一種成長機制模型,提供未來各種奈米線合成研究之參考。

    This thesis presents a new approach to synthesize self-aligned, uniform, and single-crystal cupric oxide nanowires (CuO NWs) on Cu-based multilayer on SiO2/Si for future device fabrication. The key is to introduce electroless cobalt tungsten phosphide (CoWP), which is normally used as a Cu diffusion barrier, as the nanofilter to catalyze CuO-nanowire synthesis simply by the calcination at 400 C in air (1 atm).
    The CuO-nanowire syntheses were optimized by series of fundamental investigation and experimental designs, especially on the catalytic effect of CoWP, growth time, growth temperature, and process pressure. The single-crystal monoclinic CuO nanowires synthesized exhibit a diameter of 10 - 50 nm, the length up to 7 um, a density of 109 NWs/cm2, and an average growth rate of 50 nm/min, for the samples calcined for 120 min.
    The physical properties of CuO nanowires and CoWP capping layer were analyzed by field-emission scanning electron microscope (FESEM), atomic force microscope (AFM), X-ray diffractometer (XRD), and transmission electron microscope (TEM) equipped with an energy dispersive spectrometer (EDS).
    In addition, the electrical and field-emission (FE) properties were also measured and discussed in this work. The individual as-synthesized CuO nanowire exhibits ohmic behavior with a resistivity of 10 - 60 ohm cm, which is relatively lower than those reported. From the measured field-emission properties of CuO nanowires on SiO2/Si-substrate, a low turn-on field of 4.5 V/um and high field enhancement factor of about 1400 have been achieved.
    Besides, based on the results of FESEM, AFM, cross-sectional TEM, and XRD analyses, the possible catalytic growth mechanism of CuO nanowires was also discussed. The vapor-solid (VS) mechanism is most likely responsible for the CuO-nanowire synthesis of this work. The model of growth mechanism for CuO-nanowire synthesis catalyzed by CoWP nanofilter has also been proposed in this study.


    Contents 摘要 I Abstract III Acknowledgements V Contents VII List of Figures IX Chapter 1 1 Introduction and Literature Reviews 1 Chapter 2 4 Experimental Procedures and Instruments 4 2.1 Experimental procedures 4 2.1.1 Substrate preparation 5 2.1.2 Synthesis of CuO nanowires 7 2.1.3 Characterizations of CuO nanowires 9 2.2 Introduction for instruments 10 2.2.1 Field-emission scanning electron microscope 10 2.2.2 Atomic force microscope 12 2.2.3 X-ray diffractometer 13 2.2.4 Transmission electron microscope 14 2.2.5 Focused ion beam technique 15 2.2.6 Current-voltage (I-V) measurement 16 2.2.7 Field-emission test system 17 Chapter 3 18 Results and Discussion 18 3.1 Optimization of CuO-nanowire syntheses 18 3.1.1 CoWP catalytic effect 19 3.1.2 Synthesis time effect 21 3.1.3 Synthesis temperature effect 24 3.1.4 Synthesis pressure effect 26 3.1.5 Summary of CuO-nanowire synthesis optimization 29 3.2 TEM/EDS characterization of CuO nanowires 30 3.3 Electrical properties of CuO nanowires 34 3.4 Field emission test of CuO nanowires 41 3.5 Growth mechanism of CuO nanowires 44 Chapter 4 53 Conclusion 53 Appendix 54 Synthesis of self-assembly Co3O4 nanowire on CoWP/Cu/TaN/Ta/SiO2/Si-substrate 54 A.1 Introduction 54 A.2 Experimental procedures 55 A.3 Results and Discussion 57 A.3.1 Morphology of Co3O4 nanowires 57 A.3.2 Characterization of Co3O4 nanowires 61 A.3.3 Growth mechanism of Co3O4 nanowires 64 A.4 Summary 68 Future Prospects 69 References 70 Publication Lists 75

    [1] Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H, Adv. Mater. 2003;15:353.
    [2] Tian ZR, Voigt JA, Liu J, Mckenzie B, Mcdermott MJ. J. Am. Chem. Soc. 2002;124:12954.
    [3] Wang W, Geng Y, Yan P, Liu F, Xie Y, Qian Y. J. Am. Chem. Soc. 1999;121:4062.
    [4] Wang S, Yang S, Dai ZR, Wang ZL. Phys. Chem. Chem. Phys. 2001;123:11500.
    [5] Yu SH, Cölfen H, Antonietti M. Adv. Mater. 2003;15:133.
    [6] Ghijsen J, Tjeng LH, van Elp J, Eskes H, Westerink J, Sawatzky GA. Phys. Rev. B 1988;38:11322.
    [7] Koffyberg FP, Benko FA. J. Appl. Phys. 1982;53:1173.
    [8] Ito T, Yamaguchi H, Masumi T, Adachi S. J. Phys. Soc. Jpn. 1998;67:3304.
    [9] Bendnorz JG, Muller KA. Z. Phys. B: Conens. Matter 1986;64:189.
    [10] MacDonald AH. Nature 2001;414:409.
    [11] Forsyth JB, Brown PJ, Wanklyn BM. J. Phys. C: Solid State Phys. 1998;21:2917.
    [12] Sukhorukov YP, Loshkareva NN, Samokhvalov AA, Naumov SV, Moskvin AS, Ovchinnikov AS. J. Magn. Magn. Mater. 1998;183:356.
    [13] Terakura K, Oguchi T, Williams AR, Kubler J. Phys. Rev. B 1984;30:4734.
    [14] Norman MR, Freeman AJ. Phys. Rev. B 1986;33:8896.
    [15] Switzer JA, Kothari HM, Poizot P, Nakanishi S, Bohannan EW. Nature 2003;425:490.
    [16] Xu Y, Chen D, Jiao X. J. Phys. Chem. B 2005;109:13561.
    [17] Hsieh CT, Chen JM, Lin HH, Shih HC. Appl. Phys. Lett. 2003;83:3383.
    [18] Zhu YW, Yu T, Cheong FC, Xu XJ, Lim CT, Tan VBC, Thong JTL, Sow CH. Nanotech. 2005;16:88.
    [19] Zhu YW, Sow CH, Thong JTL. J. Appl. Phys. 2007;102:114302.
    [20] Wang C, Fu XQ, Xue XY, Wang YG, Wang TH. Nanotech. 2007;18:145506.
    [21] Ramıŕez-Ortiz J, Ogura T, Medina-Valtierra J, Acosta-Ortiz SE, Bosch P, de los Reyes JA, Lara VH. Appl. Surf. Sci. 2001;174:177.
    [22] Wang H, Xu JZ, Zhu JJ, Chen HY. J. Cryst. Growth 2002;244:88.
    [23] Wang W, Zhan Y, Wang X, Liu Y, Zheng C, Wang G. Mater. Res. Bull. 2002;37:1093.
    [24] Gao XP, Bao JL, Pan GL, Zhu HY, Huang PX, Wu F, Song DY. J. Phys. Chem. B 2004;108:5547.
    [25] Anandan S, Wen X, Yang S. Mater. Chem. Phys. 2005;39:35.
    [26] Chang Y, Zeng HC. Cry. Growth & Design 2004;4:397.
    [27] Du GH, Van Tendeloo G. Phys. Chem. Lett. 2004;393:64.
    [28] Wang W, Varghese OK, Ruan C, Paulose M, Grimes¬ CA. J. Mater. Res. 2003;18:2756.
    [29] Wu HQ, Wei XW, Shao MW, Gu JS, Qu MZ. Chem. Phys. Lett. 2002;364:152.
    [30] Yao WT, Yu SH, Zhou Y, Jiang J, Wu QS, Zhang L, Jiang J. J. Phys. Chem. B 2005;109:14011.
    [31] Xu C, Liu Y, Xu G, Wang G. Mater. Res. Bull. 2002;37:2365.
    [32] Wang S, Huang Q, Wen X, Li XY, Yang S. Phys. Chem. Chem. Phys. 2002;4:3425.
    [33] Jiang XC, Herricks T, Xia YN. Nano Lett. 2002;2:1333.
    [34] Zhang K, Rossi C, Tenailleau C, Alphonse P, Chane-Ching JY. Nanotech. 2007;18:275607.
    [35] Hou HW, Xie Y, Li Q. Cry. Growth & Design 2005;5:201.
    [36] Wen X, Zhang W, Yang S. Langmuir 2003;19:5898.
    [37] Mei YF, Siu GG, Yang Y, Fu Ricky KY, Hung TF, Chu Paul K, Wu XL. Acta Materialia 2004;52:5051.
    [38] Eastman DE. Phys. Rev. B: Solid State 1970;2:1.
    [39] Zhu YW, Moo AM, Yu T, Xu XJ, Gao XY, Liu YJ, Lim CT, Shen ZX, Ong CK, Wee ATS, Thong JTL, Sow CH. Chem. Phys. Lett. 2006;419:458.
    [40] Zheng XG, Suzuki M, Xu CN. Mater. Res. Bull. 1998;33:605.
    [41] DeSisto W, Collins BT, Kershaw R, Dwight K, Wold A. Mater. Res. Bull. 1989;24:1005.
    [42] Wu H, Lin D, Pan W. Appl. Phys. Lett. 2006;89:133125.
    [43] Murphy EL, Good RH Jr. Phys. Rev. 1956;102:1464.
    [44] Xu NS, Chen J, Deng SZ. Appl. Phys. Lett. 2000;76:2463.
    [45] Tang CC, Bando Y. Appl. Phys. Lett. 2003;83:659.
    [46] Fowler RH, Nordheim LW. Proc. R. Soc. A. 1928;119:173.
    [47] Gadzuk JW, Plummer EW. Rev. Mod. Phys. 1973;45:487.
    [48] Bonard JM, Salvetat JP, Stöckli T, Forró L, Châtelain A. Appl. Phys. A. 1999;69:245.
    [49] Lee CJ, Lee TJ, Lyu SC, Zhang Y, Ruh H, Lee HJ. Appl. Phys. Lett. 2002;81:3648.
    [50] Jo SH, Tu Y, Huang ZP, Carnahan DL, Wang DZ, Ren ZF. Appl. Phys. Lett. 2003;82:3520.
    [51] Bonard JM, Weiss N, Kind H, Stöckli T, Forró L, Kern K, Châtelain A. Adv. Mater. 2001;13:184.
    [52] Edgcombe CJ, Valdrè U. J. Microsc. 2000;203:188.
    [53] Pan ZW, Dai ZR, Wang ZL. Science (Washington, D.C.) 2001;291:1947.
    [54] Yang PD, Lieber CM. Science (Washington, D.C.) 1996;273:1836.
    [55] Gu G, Zheng B, Han WQ, Roth S, Liu J. Nano Lett. 2002;2:849.
    [56] Zhang HF, Dohnalkova AC, Wang CM, Young JS, Buck EC, Wang LS. Nano Lett. 2002;2:105.
    [57] Hu CK, Gignac L, Rosenberg R, Liniger E, Rubino J, Sambucetti C, Domenicucci A, Chen X, Stamper AK. Appl. Phys. Lett. 2002;81:1782.
    [58] Kohn A, Eizenberg M, Shacham-Diamand Y. J. Appl. Phys. 2003;94:38102.
    [59] ASM Handbook: Volume 3: Alloy Phase Diagrams, 10th ed; Baker H, ASM International, Materials Park, Ohio, 1992, p.2□140.
    [60] Adegboyega GA. Niger. J. Renewable Energy 1990;1:21.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE