簡易檢索 / 詳目顯示

研究生: 梁健夫
Liang, Chien-Fu
論文名稱: 合成專有α位向硫-醣苷鍵之唾液酸寡醣體
Synthesis of Oligosialic Acids via Exclusive α S-Glycosidic Bond Fromation
指導教授: 林俊成
Lin, Chun-Cheng
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 176
中文關鍵詞: 醣生物學醣水解酶唾液酸寡糖抗原異丁基雙硫鍵α(2→9)唾液酸寡糖α(2→8)/ α(2→9)唾液酸三醣體碳水化合物結合疫苗
外文關鍵詞: glycobiology, glycosyl hydrolases, oligosialic acid antigens, tert-butyl disulfide bond, α(2→9)oligosialic acids, α(2→8)/ α(2→9)trisialic acid, carbohydrate conjugate vaccine
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract

    There are three linear polysialic acids identified in nature, α(2→9), α(2→8) and α(2→8)/α(2→9) alternative Neu5Ac units. Recent studies in glycobiology indicate that α(2→8) and/or α(2→9) di/oligosialic acids play important roles in the biological events that occur on the cell surface. However, these sugars are very labile under mild acidic or basic conditions and are susceptible to be degraded by glycosyl hydrolases. So, S-linked glycosides have been proposed to enhance the stability of the glycosidic linkage towards hydrolysis by either chemical or enzymatic means.
    The objectives of this thesis are development of convenient strategy for the synthesis of thio-oligosialic acid antigens. A new approach to the synthesis of S-linked α(2→9) oligosialic acids is developed using an asymmetric tert-butyl disulfide linkage as thiol protecting group. Compared with conventional thio-sialosides, these asymmetric disulfide sialosides can tolerate the functional group transformation conditions without resulting undesired elimination and racemization of the anomeric center. Furthermore, these sialosides can be efficiently deprotected to afford thiol nucleophile at α anomeric position without flipping the anomeric stereochemistry. By this strategy, we have successfully synthesized the α(2→9) di-, tetra-, hexa-, octa-oligosialic acids.
    In addition, the synthesis of S-linked □□2→8) and α(2→8)/α(2→9) trisialic acids by S-alkylation were developed. The methods involve chemo- and stereo-selective alkylation of C2-thiolated sialosides as nucleophile with the C8-iodide activated sialoside as electrophile. Additionally, we developed an efficient migration method to transform the C7 acetyl group of sialoside to the C9 position under mild basic conditions. The acetyl group migrated sialoside was subsequently used to synthesize C8 iodide by dichlorodimethylsilane with sodium iodide. By this strategy, the synthesis of S-linked □□2→8) and α(2→8)/α(2→9) trisialic acids were achieved.
    Owing to the successfully synthesized of S-α(2→9) oligosialic acids, conjugation of synthetic thio-antigens with carrier protein (KLH) was also investigated to the vaccine development. We used a novel and efficient method for synthetic carbohydrate conjugate vaccine preparation by attachment of an MHSu (6-maleimidohexanoic acid active ester) to the S-α(2→9) oligosialic acids, and then conjugated with thiolated KLH. Furthermore, we have used Ellman’s reagent to assay the amount of S-linked sialosides on KLH. These methods may be generally applicable for synthetic oligosaccharides.


    摘 要
    自然界存在之聚唾液酸醣苷鍵形式主要有三種,α(2→8)與α(2→9)醣鍵結形式,以及α(2→8)/ α(2→9)醣鍵結交錯出現形式。最近在醣生物學研究上指出,出現在細胞表面的α(2→8)和α(2→9) 醣鍵形式的雙醣及寡醣在生物方面上扮演重要的角色。然而這些醣類在溫和的酸性或鹼性條件下是不穩定的,而且容易被醣水解酶影響而水解。因此,硫鍵結之醣苷分子已經被提出用來增強被化學或酵素水解之醣苷鍵結的穩定度。
    本論文的目標是發展便利的策略來合成硫鍵結之唾液酸寡糖抗原。我們發展了一個不對稱的異丁基雙硫鍵來當作變旋異位性(anomeric)硫原子的保護基,並利用此新方法來合成硫鍵結α(2→9)唾液酸寡糖。比較一般傳統在唾液酸變旋異位性硫原子的保護基,我們所使用的不對稱異丁基雙硫鍵保護基能夠承受在官能基轉換過程中而不會產生不飽和鍵的脫去產物。此外,不對稱異丁基雙硫鍵保護基可以有效率的去保護而在變旋異位中心產生具有硫醇的親核試劑,並且不會造成變旋異位中心的變旋異構化。我們實驗室藉由這個方法已經成功合成了4-,6-,8-硫鍵結α(2→9)唾液酸寡糖。
    除此之外,藉由硫親核反應來發展合成硫鍵結之α(2→8)以及α(2→8)/α(2→9)三醣體,這些方法包含利用C2-硫基化之唾液酸醣苷分子當做親核試劑以及C8-碘基化之唾液酸醣苷分子當做活性化之親電試劑,來進行化學及立體選擇性之烷基化反應。此外,我們也發展了一個有效的轉移方法,在溫和的鹼性條件下將唾液酸醣苷分子七號位置的乙醯基官能基轉換至九號位置上。接著利用二氯二甲基矽烷和碘化鈉的條件下將乙醯基轉移之唾液酸醣苷分子在八號位置上進行碘基化反應。藉由這些方法,我們已經合成了硫鍵結α(2→8)唾液酸三醣體以及α(2→8)/ α(2→9)唾液酸三醣體。
    由於已經成功合成了硫鍵結之α(2→9)唾液酸寡醣體,將合成的硫代抗原和載體蛋白(KLH)進行結合也在疫苗發展上被研究。藉由MHSu(6-maleimidohexanoic acid active ester)裝配在硫鍵結之α(2→9)唾液酸寡醣體,接著與硫基化之載體蛋白(KLH)進行結合,我們利用此新穎與有效的方法來製備碳水化合物結合疫苗。另外,我們也使用Ellmans試劑去定量有多少硫鍵結之α(2→9)唾液酸醣苷分子在載體蛋白(KLH)上面。這些方法可以普遍適用在合成的寡糖上面。

    Content Abstract.........................................................................................................................i Acknowledgement……………………………………………………………………v Abbreviations..............................................................................................................vii List of Figures...............................................................................................................x List of Tables...............................................................................................................xv Content.......................................................................................................................xvi Chapter 1: Introduction……………………………………………………………..1 1.1 Carbohydrates……………………………………………………………………1 1.2 Sialic acids……………………………………………………………………….3 1.2.1 Chemical structure of sialic acids…………………………………………….3 1.2.2 Biological function of the sialic acid…………………………………………5 1.2.3 Enzymatic and chemical synthesis of the sialic acid…………………………7 1.2.3.1 Enzymatic syntheses………………………………………………………7 1.2.3.2 chemical syntheses………………………………………………………...9 1.2.4 Synthesis of oligosialic acid…………………………………………………11 1.2.4.1 Introduction of polysialic acid……………………………………………11 1.2.4.2 Synthesis of α(2-9) linkage oligosialic acid……………………………...14 1.2.5 Objectives……………………………………………………………………18 Chapter 2: Synthesis of Thio-α (2→9) Oligosialic Acids………………………….20 2.1 Introduction……………………………………………………………………..20 2.2 Synthesis of S-α(2→9) octasialic acid………………………………………….24 2.2.1 Synthesis of S-linked α(2→9) octasialic acid……………………………….27 2.2.1.1 Synthesis of S-2-(trimethylsilyl)ethyl sulfide thiol-protecting sialosides..28 2.2.1.2 Synthesis of S-Triphenylmethyl thioether thiol-protecting sialosides…....32 2.2.1.3 Synthesis of unsymmetrical S-ethyl disulfide thiol-protecting sialosides..35 2.2.1.4 Synthesis of unsymmetrical S-tert-butyl disulfide thiol-protecting sialosides…………………………………………………………………38 2.2.1.5 Conclusion……………………………………………………………….47 2.3 Experimental data………………………………………………………………48 Chapter 3: Synthesis of S-linked α(2→8) and α(2→8)/ α(2→9) Trisialic Acids via S-alkylation……………………………………………………………...82 3.1 Introduction……………………………………………………………………..82 3.2 Synthesis of S-linked α(2→8) trisialic acid…………………………………….90 3.2.1 Synthesis of S-linked α(2→8) and α(2→8)/ α(2→9) Trisialic Acids……….92 3.2.2 Conclusion………………………………………………………………….101 3.3 Experimental data……………………………………………………………...101 Chapter 4: Synthesis Protein Conjugated S-Linked Di-, Tetra- and Hexa-Sialic Acids as Immunogens………………………………………………..111 4.1 Introduction……………………………………………………………………111 4.2 Conjugation of S-linked α(2→9) di-, tetra- and hexa-sialic acids with KLH…116 4.2.1 Conjugation of S-linked oligosialic acids with carrier protein……………..118 4.2.1.1 Synthesis of maleimido-functionalized S-linked sialic acids…………...119 4.2.1.2 Preparation of keyhole limpet hemocyanin (KLH) conjugated S-linked sialic acids………………………………………………………………123 4.2.1.3 Conjugation of the S-linked di/oligosialosides with thiolated KLH by 1,4-addition……………………………………………………………125 4.2.1.4 Determination of the S-linked di/oligosialoside content on antigen-KLH conjugate………………………………………………………………..126 4.2.1.5 Conclusion………………………………………………………………129 4.3 Experimental data……………………………………………………………...130 Reference…………………………………………………………………………...140 Publications………………………………………………………………………...153 Appendix…………………………………………………………………………...154

    References
    1. Hart, G. W. In Carbohydrates in Chemistry and Biology, Vol. 3; Ernst, B.; Hart, G. W.; Sinay, P., Eds.; Wiley-VCH: Weinheim, 2000, V-Vl.
    2. Intervention of carbohydrate recognition by proteins and nucleic acids. Sears, P.; Wong, C. H. Proc. Natl. Acad. Sci USA 1996, 93, 12086-12093.
    3. Sznaidman, M. In Bioorganic Chemistry: Carbohydrates; Hecht, S. M., Ed.; Oxford University Press: New York, 1999, 1-55.
    4. One-pot sequential glycosylation: A new method for the synthesis of oligosaccharides. Yamada, H.; Harada, T.; Miyazaki, H; Takahashi, T. Tetrahedron Lett. 1994, 35, 3979-3982.
    5. Toward automated synthesis of oligosaccharides and glycoproteins. Sears, P.; Wong, C.-H. Science 2001, 291, 2344-2350.
    6. Automated solid-phase synthesis of oligosaccharides. Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science 2001, 291, 1523-1527.
    7. A general strategy for stereoselective glycosylations. Kim, J.-H.; Yang, H.; Park, J.; Boons, G.-J. J. Am. Chem. Soc. 2005, 127, 12090-12097.
    8. Use of O-glycosylation in total synthesis. Pellissier, H. Tetrahedron 2005, 61, 2947-2993.
    9. Regioselective one-pot protection of carbohydrates. Wang, C.-C.; Lee, J.-C.; Luo, S.-Y.; Kulkarni, S. S.; Huang, Y.-W.; Lee, C.-C.; Chang, K.-L.; Hung, S.-C. Nature 2007, 446, 896-899.
    10. Schauer, R. Sialic Acids: Chemistry, Metabolism and Function Vol. 10, Springer-Verlag, New York City, 1982. 5-39.
    11. Achievements and challenges of sialic acid research. Schauer, R. Glycoconj. 2000, 17, 485-499.
    12. Biology of the Sialic Acids: Rosenberg, A., Ed.; Plenum Press: New York, 1995.
    13. Chemistry, metabolism, and biological functions of sialic acids. Schauer, R. Adv. Carbohydr. Chem. Biochem. 1982, 40, 131-234.
    14. Chemical diversity in the sialic acids and related α-keto acids: An Evolutionary Per. Antaga, T.; Varki, A. Chem. Rev. 2002, 102, 439-470.
    15. Chemical approaches to glycobiology and emerging carbohydrate-based therapeutic agents. Yarema, K. J.; Bertozzi, C. R. Curr. Opin. Chem. Biol. 1998, 2, 49-61.
    16. Chemical glycobiology. Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357-2364.
    17. Carbohydrate mimetics: A new strategy for tackling the problem of carbohydrate-mediated biological recognition. Sears, P.; Wong, C. H. Angew. Chem. Int. Ed. 1999, 38, 2300-2324.
    18. Glycoprotein glycosylation and cancer progression. Dennis, J. W.; Granovsky, M.; Warren, C. E. Biochim. Biophys. Acta 1999, 1473, 21-34.
    19. Ganglioside expression on human malignant melanoma assessed by quantitative immune thin-layer chromatography. Hamilton, W. B.; Helling, F.; Lloyd, K. O.; Livingston, P. O. Intl. J. Cancer 1993, 53, 566-573.
    20. Herrler, G.; Hausmann, J.; Klenk, H. D. In Biology of Sialic Acids; Rosenberg, A., Ed.; Plenum Press: New York, London, 1995; pp 315-336.
    21. Aldotetroses and C(3)-modified aldohexoses as substrates for N-acetylneuraminic acid aldolase: A model for the explanation of the normal and the inversed stereoselectivity. Fitz, W.; Schwark, J.-R.; Wong, C.-H. J. Org. Chem. 1995, 60, 3663-3670.
    22. Substrate specificity of the sialic acid biosynthetic pathway. Jacobs, C. L.; Goon, S.; Yarema, K. J.; Hinderlich, S.; Hang, H. C.; Chai, D. H.; Bertozzi, C. R. Biochemistry 2001, 40, 12864-1874.
    23. The synthesis of N-acetylneuraminic acid. Cornforth, J. W.; Firth, M. E.; Gottschalk, A. Biochem. J. 1958, 68, 57-61.
    24. The synthesis and glycosidation of N-acetylneuraminic acid. Deninno, M. P. Synthesis 1991, 583-593.
    25. Kuhn, R.; Baschang, G. Justus Liebigs Ann. Chem. 1962, 659, 156-163.
    26. Indium-mediated allylations of unprotected carbohydrates in aqueous media: A short sSynthesis of sialic acid. Gordon, D. M.; Whitesides, G. M. J. Org. Chem. 1993, 58, 7937-7938.
    27. Stereoselective total syntheses of the naturally occurring enantiomers of N-acetylneuraminic acid and 3-deoxy-D-manno-2-octulosonic acid. A new and
    stereospecific approach to sialo and 3-deoxy-D-manno-2-octulosonic acid conjugates. Danishefsky, S. J.; DeNinno, M. P.; Chen, S.-H. J. Am. Chem. Soc. 1988, 110, 3929-3940.
    28. Total synthesis of fully acetylated N-acetylneuraminic acid (Neu5Ac), 2-deoxy-β-Neu5Ac, and 4-epi-2-deoxy-β-Neu5Ac from D-glucose. Li, L.-S.; Wu, Y.-L.; Wu, Y. Org. Lett. 2000, 2, 891-894.
    29. Zbiral, E. In Carbohydrates: Synthetic Methods and Applications in Medicinal Chemistry: Ogura, H., Hasegawa, A., Suami, T., Eds.; VCH: New York, 1992; pp 304-339.
    30. A synthetic conjugate polysaccharide vaccine against haemophilus influenzae type b. Bencomo, V. V.; et al. Science 2004, 305, 522–525.
    31. Development of vaccines against meningococcal disease. Jo´dar, L.; Feavers, I. M.; Salinsbury, D.; Granoff, D. M. Lancet 2002, 359, 1499-1508.
    32. Glycobiology of di- and oligosialyl glycotopes. Sato, C.; Kitajima, K. Trends Glycosci. Glycotechnol. 1999, 11, 371-390.

    33. Recent advances in O-sialylation. Boons, G.-J.; Demchenko, A. V. Chem. Rev. 2000, 100, 4539-4565.
    34. Lin, C.-H.; Lin, C.-C. In The Molecular Immunology of Complex Carbohydrates 2 (Ed.: Wu, A.-M.), Kluwer/Plenum, New York, 2001.
    35. A novel and versatile glycosyl donor for the preparation of glycosides of N-acetyineuraminic acid. Demchenko, A. V.; Boons, G.-J. Tetrahedron Lett. 1998, 39, 3065-3068.
    36. The thioglycoside and glycosyl phosphite of 5-azido sialic acid: Excellent donors for the α-glycosylation of primary hydroxy groups. Yu, C.-S.; Niikura, K.; Lin, C.-C.; Wong, C.-H. Angew. Chem., Int. Ed. 2001, 40, 2900-2903.
    37. N-trifluoroacetyl sialyl phosphite donors for the synthesis of α(2→9) oligosialic acids. Lin, C.-C.; Huang, K.-T.; Lin, C.-C. Org. Lett. 2005, 7, 4169-4172.
    38. Extending the possibility of an N-troc-protected sialic acid donor toward variant sialo-glycoside synthesis. Ando, H.; Koike, Y.; Ishida, H.; Kiso, M. Tetrahedron Lett. 2003, 44, 6883-6886.
    39. One-pot synthesis of sialo-containing glycosyl amino acids by use of an N-trichloroethoxycarbonyl-β-thiophenyl sialoside. Tanaka, H.; Adachi, M.; Takahashi, T. Chem.-Eur. J. 2005, 11, 849-862.
    40. 1,5-Lactamized sialyl acceptors for various disialoside syntheses: Novel method for the synthesis of glycan portions of Hp-s6 and HLG-2 gangliosides. Ando, H.; koike, Y.; Koizumi, S.; Ishida, H.; Kiso, M. Angew. Chem. Int. Ed. 2005, 44, 6759-6763.
    41. Stereoselective Synthesis of Oligo-α-(2,8)-Sialic Acids. Tanaka, H.; Nishiura, Y.; Takahashi, T. J. Am. Chem. Soc. 2006, 128, 7124-7125.

    43. C-5 Modifications in N-acetyl-neuraminic acid: scope and limitations.De Meo, C.; Priyadarshani, U. Carbohydr. Res. 2008, 343, 1540-1552.
    44. Synthesis of β-D-glucopyranosyl(1→3)-1-thiol-β-glucosamine disaccharide derivative as building block for the synthesis of hyaluronic acid. Lin, C.-C.; Hsu, T.-S.; Lu, K.-C.; Huang, I.-T. J. Chin. Chem. Soc. 2000, 47, 921-928.
    45. β-Sialyl phosphite and phosphoramidite: Synthesis and application to the chemoenzymatic synthesis of CMP-sialic acid and sialyl oligosaccharides. Kondo, H.; Ichikawa, Y.; Wong, C.-H. J. Am. Chem. Soc. 1992, 114, 8748-8750.
    46. Efficient synthesis of an α(2→9) trisialic acid by one-pot glycosylation and polymer-assisted deprotection. Tanaka, H.; Tateno, Y.; Nishiura, Y.; Takahashi, T. Org. Lett. 2008, 10, 5597-5600.
    47. The synthesis of 3-deoxy-4-thiocellobiose from levoglucosenone. Witczak, Z. J.; Chhabra, R.; Chen, H.; Xie, X.-Q. Carbohydr. Res. 1997, 301, 167-175.
    48. Conformational analysis of maltoside heteroanalogues using high-quality NOE data and molecular mechanics calculations. Flexibility as a function of the interglycosidic chalcogen atom. Weimar, T.; Kreis, U. C.; Andrews, J. S.; Pinto, B. M. Carbohydr. Res. 1999, 315, 222-233.
    49. Investigation of the stability of thiosialosides toward hydrolysis by sialidases using NMR spectroscopy. Wilson, J. C.; Kiefel, M. J.; Angus, D. I.; von Itzstein, M. Org. Lett. 1999, 1, 443-446.
    50. Diversity in cell surface sialic acid presentations: implications for biology and disease.Varki, N. M.; Varki, A. Lab. Invest. 2007, 87, 851-857.
    51. Chain length diversity of sialic acids and its biological significance. Sato, C. Trends Glycosci. Glycotechnol. 2004, 16, 331-344.
    52. New ganglioside analogs that inhibit influenze virus sialidase. Suzuki, Y.; Sato, K.; Kiso, M.; Hasegawa, A. Glycoconjugate J. 1990, 7, 349-356.
    53. Synthesis of a thio-linked analogue of sialyl lewis X. Eisele, T.; Toepfer, A.; Kretzschmar, G.; Schmidt, R. R. Tetrahedron Lett. 1996, 37, 1389-1392.
    54. A simple method for the preparation of thioglycosides of N-acetylneuraminic acid. Bennett, S.; von Itzstein, M.; Kiefel, M. J. Carbohydr. Res. 1994, 259, 293-299.
    55. Synthesis and biological evaluation of N-acetylneuraminic acid-based rotavirus inhibitors. Kiefel, M. J.; Beisner, B.; Bennett, S.; Holmes, I. D.; von Itzstein, M. J. Med. Chem. 1996, 39, 1314-1320.
    56. S-Lined ganglioside analogues for use in conjugate vaccines. Rich, J. R.; Bundle, D. R. Org. Lett. 2004, 6, 897-900.
    57. Thiooligosaccharide conjugate vaccine evoke antibodies specific for native antigens. Bundle, D. R.; Rich, J. R.; Jacques, S.; Yu, H. N.; Nitz, M.; Ling, C. C. Angew. Chem. Int. Ed. 2005, 44, 7725-7729.
    58. Chemical and chemoenzymatic synthesis of S-linked ganglioside analogues and their protein conjugate for use as immunogens. Rich, J. R.; Wakarchuk, W. W.; Bundle, D. R. Chem. Eur. J. 2006, 12, 845-858.
    59. Synthetic Routes to Thiooligosaccharides and Thioglycopeptides. Pachamuthu, K.; Schmidt, R. R. Chem. Rev. 2006, 106, 160-187.
    60. Elaboration of a novel type of interglycosidic linkage: syntheses of disulfide disaccharides. Szilagyi, L.; Illyes, T.-Z.; Herczegh, P. Tetrahedron Lett. 2001, 42, 3901-3903.
    61. The surprise synthesis of α-GlcNAc 1-C-sulfonates. Knapp, S.; Darout, E.
    Tetrahedron Lett. 2002, 43, 6075-6078.
    62. Thio-oligosaccharides of sialic acid – synthesis of an α(2→3) sialyl galactoside via a gulofuranose/galactopyranose approach. Turnbull, W. B; Field, R. A. J. Chem. Soc., Perkin Trans. 1 2000, 1859-1866.

    63. Recent advances in the synthesis of sialic acid derivatives and sialylmimetics as biological probes. Kiefel, M. J.; von Itzstein, M. Chem. Rev. 2002, 102, 471-490.
    64. Acetylation of N-acetylneuraminic acid and its methyl ester. Marra, A.; Sinay, P. Carbohydr. Res. 1989, 190, 317-322.
    65. Chambert, S.; Thomassor, F.; Decout, J. L. J. Org. Chem. 2002, 67, 1898-1904.
    66. Conversion of 2-(trimethylsilyl)ethyl sulfides into thioesters. Grundberg, H.; Andergran, M.; Nilsson, U. J. Tetrahedron Lett. 1999, 40, 1811-1814.
    67. New detritylation method for nucleosides and nucleotides by ceric ammonium nitrate. Hwu, J. R.; Jain, M. L.; Tsay, S. C.; Hakimelahi, G. H. Chem. Commun. 1996, 545-546.
    68. Reductive demercuration in deprotection of trityl thioethers, trityl amines, and trityl ethers. Maltese, M. J. Org. Chem. 2001, 66, 7615-7625.
    69. Solid-phase synthesis of thio-oligosaccharides. Hummel, G.; Hindsgaul, O. Angew. Chem. Int. Ed. 1999, 38, 1782-1784.
    70. A convenient method for the preparation of unsymmetrical disulfides by the use of diethyl azodicarboxylate. Mukaiyama, T.; Takahashi, K. Tetrahderon Lett. 1968, 9, 5907-5908.
    71. Synthesis of palmitoyl-thioester T-cell epitopes of myelin proteolipid protein (PLP). Comparison of two thiol protecting groups (StBu and Mmt) for on-resin acylation. Denis, B.; Trifilieff, E. J. Peptide Sci. 2000, 6, 372-377.
    72. In pursuit of carbohydrate-based HIV vaccines, Part 1: The total synthesis of hybrid-type gp120 fragments. Mandal, M.; Dudkin, V. Y.; Geng, X.; Danishefsky, S. J. Angew. Chem. Int. Ed. 2004, 43, 2557-2561.

    73. 1H-NMR studies at N-acetyl-D-neuraminic acid ketosides for the determination of the anomeric configuration. Dabrowski, U.; Friebolin, H.; Brossmer, R.; Supp, M. Tetrahedron Lett. 1979, 20, 4637-4640.
    74. Glycosylation using methylthioglycosides of N-acetylneuraminic acid and dimethyl(methylthio)sulfonium triflate. Kanie, O.; Kiso, M.; Hasegawa, A. J. Carbohydr. Chem. 1988, 7, 501-506.
    75. A facile preparation of alkyl α-glycosides of the methyl ester of N-acetyl-D-neuramninc acid. Dominicus. J. M.; Vleugel, Van der; van Heeswijk, W. A. R.; Vliegenthart, J. F. G. Carbohydr. Res. 1982, 102, 121-130.
    76. Glycosylation of 4,7,8,9-Tetra-O-acetyl-2-deoxy-2β,3β-epoxy-N-acetylneuraminic acid methyl ester. Okamoto, K.; Kondo, T.; Goto, T. Bull. Chem. Soc. Jpn. 1987, 60, 637-643.
    77. A simple method to determine the anomeric configuration of sialic acid and its derivatives by 13C-NMR. Hori, H.; Nakajima, T.; Nishida, Y.; Ohrui, H.; Meguro, H. Tetrahedron Lett. 1988, 29, 6317-6320.
    78. Polysialic acid and the regulation of cell interactions. Rutishauser, U. Curr. Opin. Cell Biol. 1996, 8, 679-684.
    79. Vaccination of small cell lung cancer patients with polysialic acid or N-propionylated polysialic acid conjugated to keyhole limpet hemocyanin. Krug, L. M.; Ragupathi, G.; Ng, K. K.; Hood, C.; Jennings, H. J.; Guo, Z.; Kris, M. G.; Miller, V.; Pizzo, B.; Tyson, L.; Baez, V.; Livingston P. O. Clin. Cancer Res. 2004, 10, 916-923
    80. The localization of gangliosides in neurons of the central nervous system: the use of anti-ganglioside antibodies. Schwarz, A.; Futerman, A. Biochim.Biophys. Acta 1992, 1123, 184-190.

    81. Ganglioside function in the neuron. Ledeen, R.W.; Wu, G.. Trends Glycosci. Glycotechnol. 1992, 4, 174-187.
    82. Occurrence of terminal α 2→8-linked disialylated poly-N-acetyllactosamine chains with LeX and I antigenic glycotopes in tetraantennary arms of an N-linked glycoprotein isolated from rainbow trout ovarian fluid. Funakoshi, K.; Taguchi, T.; Sato, C.; Kitajima, K.; Inoue, S.; Morris, H. R.; Dell, A.; Inoue, Y. Glycobiology 1997, 7, 195-205.
    83. Development of a highly sensitive chemical method for detecting α2→8-linked oligo/polysialic acid residues in glycoproteins blotted on the membrane. Sato, C.; Inoue, S.; Matsuda, T.; Kitajima, K. Anal. Biochem. 1998, 261, 191-197.
    84. A novel direct glycosylation approach for the synthesis of dimers of N-acetylneuraminic acid. Demchenko, A.; Boons, G.-J. Chem. Eur. J. 1999, 5, 1278-1283.
    85. A stereoselective approach for the synthesis of α-sialosides. Meo, D.; Demchenko, A.; Boons, G.-J. J. Org. Chem. 2001, 66, 5490-5497.
    86. Synthetic study of α(2,8) oligosialoside using N-troc sialyl N-phenyltrifluoroimidate. Tanaka, H.; Nishiura, Y.; Adachi, M.; Takahashi, T. Heterocycles 2006, 67, 107-112.
    87. Syntheses of (α2→9) and (α2→8) linked neuraminylneuraminic acid derivatives. Okamoto, K.; Kondo, T.; Goto, T. Tetrahedron Lett. 1986, 27, 5229-5232.
    88. Studies directed toward the synthesis of polysialogangliosides: The regioand stereocontrolled synthesis of rationally designed fragments of the tetrasialoganglioside GQl. Ito, Y.; Nunomura, S.; Shibayama, S.; Ogawa, T. J. Org. Chem. 1992, 57, 1821-1831.

    89. Synthetic study on α(2→8)-linked oligosialic acid employing 1,5-lactamization as a key step. Tanaka, H.; Ando, H.; Ishida, H.; Kiso, M.; Ishihara, H.; Koketsu, M. Tetrahedron Lett. 2009, 50, 4478-4481.
    90. An efficient convergent synthesis of GP1c ganglioside epitope. Tanaka, H.; Nishiure, Y.; Takahashi, T. J. Am. Chem. Soc. 2008, 130, 17244-17245.
    91. Synthesis of S-linked α(2→9) octasialic acid via exculsive α S-glycosidic bond formation. Liang, C.-C.; Yan, M.-C.; Chang, T.-C.; Lin, C.-C. J. Am. Chem. Soc. 2009, 131, 3138-3139.
    92. Regioselective synthesis of 4azido-Neu2en5,7Ac21Me and its intramolecular transformation to 4azido-Neu2en5,9Ac21Me. Zhao, Q.-J.; Lou, Y.-Y.; Xiong, R.-S.; Li, H.-H.; Shen, J.-S. Carbohydr. Res. 2008, 343, 2459-2462.
    93. Structural variations of N-Acetylneuraminic acids. Brandstetter, H. H.; Zbiral, E. Liebigs Ann. Chem. 1983, 2055-2065.
    94. New halogenation reagent systems useful for the mild one-step conversion of alcohols into iodides or bromides. Classon, B.; Lin, Z.-C. J. Org. Chem. 1988, 53, 6126-6130.
    95. Synthetic methods and reactions: Synthetic transformations with trichloromethylsilane/sodium iodide reagent. Olah, G. A.; Husain, A.; Singh B. P.; Mehrotra, A. K. J. Org. Chem. 1983, 48, 3667-3672.
    96. Synthesis of bromoindolyl 4,7-di-O-methyl-Neu5Ac: specificity toward influenza A and B viruses. Liav, A.; Hansjergen, J. A.; Achyuthan, K. E.; Shimasaki, C. D. Carbohydr. Res. 1999, 317, 198-203.
    97. Biological roles of oligosaccharides: all of the theories are correct. Varki, A. Glycobiology 1993, 3, 97-130.
    98. Glycobiology: toward understanding the function of sugars. Dwek, R. A. Chem. Rev. 1996, 96, 683-720.
    99. Glycosylation inhibitors in biology and medicine. Jacob, G. S. Curr. Biol. 1995, 5, 605-611.
    100. Selectins and their ligands: current concepts and controversies. Kansas, G. S. Blood 1996, 88, 3259-3287.
    101. Glycosphingolipid antigens and cancer therapy. Hakomori, S.-i. & Zhang, Y. Chem. Biol. 1997, 4, 97-104.
    102. Randomised trial of 23-valent pneumococcal capsular polysaccharide vaccine in prevention of pneumonia in middle-aged and elderly people. Ortqvist, A.; Hudlund, J.; Burman, L. A.; Elbel, E.; Hofer, M.; Leinonen, M. et al. Lancet 1998, 351, 399-403.
    103. Carbohydrate–Protein Conjugate Vaccines. Isaacs. D.; Ada, G. Clin. Microbiol. Infect. 2003, 9, 79-85.
    104. Keyhole limpet hemocyanin conjugate vaccines against cancer: the Memorial Sloan Kettering experience. Musselli, C.; Livingston, P. O.; Ragupathi, G. L. J. Cancer. Res. Clin. Oncol. 2001, 127, R20-R26.
    105. Towards a fully synthetic carbohydrate-based anticancer vaccine: Synthesis and immunological evaluation of a lipidated glycopeptide containing the tumor-associated Tn antigen. Buskas, T.; Ingale, S.; Boons, G.- J. Angew. Chem, Int. Ed. 2005, 44, 5985-5988.
    106. Synthetic vaccines consisting of tumor-associated MUC1 glycopeptide antigens and a T-cell epitope for the induction of a highly specific humoral immune response. Westerlind, U.; Hobel, A.; Gaidzik, N.; Schmitt, E.; Kunz, H. Angew. Chem. Int. Ed. 2008, 47, 7551-7556.
    107. NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. Hermans, I. F.; Silk, J. D.; Gileadi, U.; Salio, M.; Mathew, B.; Ritter, G.; Schmidt, R.; Harris, A. L.; Old, L.; Cerundolo, V. J. Immunol. 2003, 171, 5140-5147.
    108. Preparation and evaluation of unimolecular pentavalent and hexavalent antigenic constructs targeting prostate and breast cancer: A synthetic route to anticancer vaccine candidates. Ragupathi, G.; Koide, F.; Livingston, P. O.; Cho, Y. S.; Endo, A.; Wan, Q.; Spassova, M. K.; Keding, S. J.; Allen, J.; Ouerfelli, O.; Wilson, R. M.; Danishefsky, S. J. J. Am. Chem. Soc. 2006, 128, 2715-2725.
    109. From the laboratory to the clinic: A retrospective on fully synthetic carbohydrate-based anticancer vaccines. Danishefsky, S. J.; Allen, J. R. Angew. Chem. Int. Ed. 2000, 39, 836-863.
    110. Induction of meningococcal group B polysaccharide-specific IgG antibodies in mice by using an N-propionylated B polysaccharide-tetanus toxoid conjugate vaccine. Jennings, H. J.; Roy, R.; Gamian. A. J. Immunol. 1986, 137, 1708-1713.
    111. A novel and efficient method for synthetic carbohydrate conjugate vaccine preparetion: synthesis of sialyl Tn-KLH conjugate using a 4-(4-N-maleimidomethyl) cyclohexane-1-carboxyl hydrazide (MMCCH) linker arm. Ragupathi, G.; Koganty, R. R.; Qiu, D.; Lloyd, K. O.; Livingston, P. O. Glycoconjugate J. 1998, 15, 217-221.
    112. Studies on heterobifunctional cross-linking reagents, 6-maleimidohexanoic acid Active Esters. Kida, S.; Maeda, M.; Hojo, K.; Eto, Y.; Nakagawa, S.; Kawasaki, K. Chem. Pharm. Bull. 2007, 55, 685-687.
    113. Routine preparation of thiol oligonucleotides: Application to the synthesis of oligonucleotide-peptide hybrids. Ede, N. J.; Tregear, G. W.; Haralambidis, J. Bioconjugate Chem. 1994, 5, 373-378.

    114. Keyhole limpet hemocyanin: Structural and functional characterization of two different subunits and multimers. Swerdlow, R. D.; Ebert, R. F.; Lee, P.; Bonaventura, C.; Miller, K. I. Comp. Biochem. Physiol. 1996, 113B, 537-548.
    115. The thiobarbituric acid assay of sialic acids. Warren, L. J. Biol. Chem. 1959, 234, 1971-1975.
    116. The mechanism of the periodate-thiobarbituric acid reaction of sialic acids. Paerels, G. B.; Schut, J. Biochem. J. 1965, 96, 787-792.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE