簡易檢索 / 詳目顯示

研究生: 鄧國良
Kuo-liang Teng
論文名稱: 使用分子動力學模擬分析奈米流體之熱傳導係數
Thermal Conductivity of Nanofluids Diagnosis by Molecular Dynamics Simulation
指導教授: 錢景常
Ching-Chang Chieng
蕭百沂
Pai-Yi Hsiao
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 77
中文關鍵詞: 奈米流體熱傳導係數分子動力學模擬
外文關鍵詞: nanofluids, thermal conductivity, molecular dynamics simulation, md
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米流體由奈米尺寸的奈米球及基礎流體構成。在眾多的實驗顯示奈米球與基礎流體的體積比非常低,奈米流體的熱傳導係數也會顯著增加。在能源緊張的今日,使用奈米流體做節能是個引人矚目之方法。本文利用分子動力學模擬計算奈米流體之熱傳導係數,並了解奈米流體隻熱傳導係數比基礎流體高許多的基本機制,並設計有效之奈米流體作為熱傳之工作流體,來實行節能。分子動力學模擬法與每一個原子的位置、動能、及相互作用力息息相關。其所建構出來的系統或物質,可展現特定之物理係數,如熔點、沸點、黏滯係數或熱傳導係數。熱傳導係數的獲得,在這些物理係數中是公認最困難的常數。在系統達到平衡態後,本文採取非平衡法(NEMD)及葛因古博法(Green-Kubo法)來計算熱傳導係數。當奈米球包含的原子數大於10以上,兩個方法所得的值並不相同,本文也仔細探討原因,並尋求合理的解釋。此外,由於奈米流體在低體積比時所需的分子數十分龐大,若要與實驗中奈米流體動輒為數十奈米尺寸之奈米球相比,我們必須設計一套方法,做實際的估計,本文也提出可行之法。


    Nanofluid is defined as a nanoparticle suspension in the base fluid. Tremendous enhancement of thermal conductivity of nanofluids has been observed in the experiment, which leads to the applications for energy saving. This paper aims to calculate the thermal conductivity of nanofluids, and to identify the physical mechanism of enhancement by Molecular Dynamics simulation. Position and velocity of each atom, and the interaction between atoms are obtained by Molecular Dynamic simulation, and thus the physical coefficients, such as melting point, boiling point, viscosity, thermal conductivity of a system of substance can be modeled by these quantities. Among these physical properties, thermal conductivity is the most difficult quantity to calculate by Molecular Dynamics simulation. Two approaches of calculating thermal conductivity by molecular dynamic method, non-equilibrium method (NEMD) and Green-Kubo method, are explored and compared after system reaching equilibrium state. The results show that different values are obtained if the number of atoms in the nanoparticle is larger than 10 atoms. The physics will be identified and discussed in detail to reach reasonable conclusion. Furthermore, the low volume fraction nanofluids are composed of a large number of atoms, which implies the impossible computer resource required, therefore, a simplified shell model is derived to estimate the thermal conductivity of nanofluids, so that the comparisons with the experimental results can be conducted.

    摘要 Abstract 目錄 圖目錄 表目錄 第一章 序論 1.1 文獻回顧 1.1.1 相關實驗 1.1.2 理論模式 1.1.2.1 估算模式 1.1.2.2 細算模式 1.1.3 物理機制探討 1.1.3.1 液體層狀結構 1.1.3.2 布朗運動 1.1.3.3 奈米顆粒 1.1.4 分子動力學模擬 1.2 研究目的 第二章 計算模型 2.1 力學模型 2.2 原子間勢能函數 2.3 熱傳導係數 2.3.1 直接方法 2.3.2 Green-Kubo 第三章 結果與討論 3.1 Green-Kubo計算熱傳導係數 3.1.1 單一奈米顆粒系統 3.1.2 多顆奈米顆粒系統 3.1.3 液體層狀結構 3.2 直接方法計算熱傳導係數 3.2.1 液體層狀結構 3.3 Green-Kubo與直接方法之比較 第四章 結論 4.1 結論 4.2 未來工作 參考文獻 符號表

    [1] H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, “Alternation of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of Al2O3, SiO2 and TiO2 Ultra-Fine Particles),” Netsu Bussei (Japan) (1993), Vol. 7, p.227,1993
    [2] S. Lee, S.U.S. Choi, S. Li, and J.A. Eastman, “Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles”, ASME Journal of Heat Transfer (1999), Vol. 121, p.280
    [3] J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, and L.J. Thompson, “Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles”, Applied Physics Letter (2001), Vol. 78, p.718
    [4] J.C. Maxwell, A Treatise on Electricity and Magnetism, 2nd Edition, Oxford Univ. Press, Cambridge (1904), p.435
    [5] S.U.S. Choi, “Enhancing Thermal Conductivity of Fluids with Nanoparticles”, Developments and Applications of Non-Newtonian Flows (1995), FED-vol. 231/MD-vvol. 66, p. 99
    [6] H. Akoh, Y. Tsukasaki, S. Yatsuya, A. Tasaki, “Magnetic Properties of Ferromagnetic Ultrafine Particles Prepared by Vacuum Evaporation on Running Oil Substrate”, Journal of Crystal Growth (1978), vol. 45, p.495
    [7] J. Kestin, W.A. Wakeham, “A Contribution to the Theory of the Transient Hot-wire Technique for Thermal Conductivity Measurements”, Physica A (1978), vol. 92, p. 102
    [8] X. Wang, X. Xu, S.U.S. Choi, “Thermal Conductivity of Nanoparticle-fluid Mixture”, Journal of Thermophysics and Heat Transfer (1999), vol. 13, p. 480
    [9] S.K. Das, N. Putta, P. Thiesen, W. Roetzel, “Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids”, ASME Trans. J. Heat Transfer (2003), vol. 125, p. 567
    [10] S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, “Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles”, Journal of Heat Transfer (1999), vol. 121, p. 280
    [11] H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, Q. Wu, “Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles”, Journal of Applied Physics (1993), vol. 91, p. 4568
    [12] T.K. Hong, H.S. Yang, C.J. Choi, “Study of the Enhanced Thermal Conductivity of Fe Nanofluids”, Journal of Applied Physics (2005), vol. 97, p.1
    [13] S.M.S. Murshed, K.C. Leong, C. Yang, “Enhanced Thermal Conductivity of TiO2-water Based Nanofluids”, International Journal of Thermal Sciences (2005), vol. 44, p. 367
    [14] H. Xie, J. Wang, T. Xi, Y. Liu, “Study on the Thermal Conductivity of SiC Nanofluids”, Journal of the Chinese Ceramic Society (2001), vol.29, p. 361
    [15] H. Xie, J. Wang, T. Xi, Y. Liu, “Thermal Conductivity of Suspensions Containing Nanosized SiC Particles”, International Journal of Thermophysics (2002), vol. 23, p.571
    [16] R.L. Hamilton, and O.K. Crosser, “Thermal Conductivity of Heterogeneous Two-Component Systems”, IEC Fundamentals (1962), Vol. 1, p.187
    [17] C.H. Li, G.P. Peterson, “Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids)”, Journal of Applied Physics (2006), vol. 99, 084314
    [18] H.E. Patel, S.K. Das, T. Sundararagan, A.S. Nair, B. Geoge, T. Pradeep, “Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects”, Applied Physics Letter (2003), vol. 83, p. 2931
    [19] S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, and E.A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions”, Applied Physics Letters (2001), Vol. 79, p.2252
    [20] H. Xie, H. Lee, W. Youn, M. Choi, “Nanofluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities”, Journal of Applied Physics (2003), vol. 94, p.4967
    [21] M. Biercuk, M. Llaguno, M. Radosavljevic, J. Hyun, A. Jonhson, J. Fischer, “Carbon Nanotube Composites for Thermal Management”, Applied Physics Letters (2002), vol. 80, p. 2767
    [22] D. Wen, Y. Ding, “Effective Thermal Conductivity of Aqueous Suspensions of Carbon Nanotubes (Carbon Nanotube Nanofluids)”, Journal of Thermaphysics and Heat Transfer (2004), vol. 18, p. 481
    [23] M.S. Liu, M. Ching-Cheng Ln, I.T. Huang, C.C. Wang, “Enhancement of Thermal Conductivity with Carbon Nanotube for Nanofluids”, International Communications in Heat and Mass Transfer (2005), vol. 32, p. 1202
    [24] X.Q. Wang, A.S. Mujumdar, “Heat Transfer Characteristics of Nanofluids: A Review”, International Journal of Thermal Sciences (2007), vol. 46, p.1
    [25] J.M. Li, Z.L. Li, B.X. Wang, “Experimental Viscosity Measurements for Copper Oxide Nanoparticle Suspensions”, Tsinghua Sci. Tech. (2002), vol. 7, p. 198
    [26] S.K. Das, N. Putra, W. Roetzel, “Pool Boiling Characteristics of Nanofluids”, International Journal of Heat and Mass Transfer (2003), vol. 46, p.851
    [27] S. Lee, S.U.S. Choi, “Application of Metallic Nanoparticle Suspensions in Advanced Cooling System”, in: 1996 International Mechanical Engineering Congress and Exhibition, Atlanta, USA (1996)
    [28] Y. Xuan, Q. Li, “Investigation on Convective Heat Transfer and Flow Features of Nanofluids”, Journal of Heat Transfer (2003), vol. 125, p. 151
    [29] D. Wen, Y. Ding, “Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region under Laminar Flow Conditions”, International Journal of Heat and Mass Transfer (2004), vol.47, p. 5181
    [30] S. Heris, S.G. Etemad, M. Esfahany, “Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer”, International Communications in Heat and Mass Transfer (2006), vol. 33, p. 529
    [31] C.Y. Tsai, H.T. Chien, P.P. Ding, B. Chan, T.Y. Luh, P.H. Chen, “Effect of Structural Character of Gold Nanoparticles in Nanofluid on Heat Pipe Thermal Performance”, Material Letters (2004), vol. 58, p. 1461
    [32] Y. Ding, H. Alias, D. Wen, R.A. Williams, “Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)”, International Journal of Heat and Mass Transfer (2005), vol. 49, p. 240
    [33] B. Pak, Y. Cho, “Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles”, Experimental Heat Transfer (1998), vol. 11, p. 151
    [34] Y. Yang, Z.G. Zhang, E.A. Grulke, W.B. Anderson, G. Wu, “Heat Transfer Properties of Nanoparticle-in-fluid Dispersions (Nanofluids) in Laminar Flow”, International Journal of Heat and Mass Transfer (2005), vol. 48, p. 1107
    [35] D. Faulkner, M. Khotan, R. Shekarriz, “Practical Design of a 1000 W/cm2 Cooling System”, in: Annual IEEE Semiconductor Thermal Measurement and Management Symposium, Institute of Electrical and Electronics Engineers Inc., San Jose, CA, United States (2003), p. 223
    [36] S. Witharana, “Boiling of refrigerants on Enhanced Surfaces and Boiling of Nanofluids”, PhD Thesis, The Royal Institute of Technology (2003)
    [37] C.H. Li, B.X. Wang, X.F. Peng, “Experimental Investigations on Boiling of Nano-Particle Suspensions”, in: 2003 Boiling Heat Transfer Conference, Jamica, USA (2003)
    [38] I.C. Bang, S.H. Chang, “Boiling Heat Transfer Performance and Phenomena of Al2O3-Water Nanofluids from a Plain Surface in a Pool”, in: Proceedings of ICAPP, Pitterburgh, US (2004)
    [39] I.C. Bang, S.H. Chang, “Boiling Heat Transfer Performance and Phenomena of Al2O3-Water Nano-Fluids from a Plain Surface in a Pool”, International Journal of Heat and mass Transfer (2005), vol. 48, p. 2420
    [40] S.M. You, J.H. Kim, K.H. Kim, “Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer”, Applied Physics Letters (2003), vol. 83, p. 3374
    [41] D.W. Zhou, “Heat Transfer Enhancement of Copper Nanofluid with Acoustic Cavitation”, International Journal of Heat and Mass Transfer (2004), vol. 47, p. 3109
    [42] J.A. Eastman, U.S. Choi, S. Li, L.J. Thompson, S. Lee, “Enhanced Thermal Conductivity Through the Development of Nanofluids”, Materials Research Society, Pittsburgh, PA, USA, Boston, MA, USA (1997), p. 3
    [43] Y. Xuan, Q. Li, “Heat Transfer Enhancement of Nanofluids”, International Journal of Heat and Fluid Transfer (2000), vol. 21, p. 58
    [44] E.S. Choi, J.S. Brooks, D.L. Eaton, M.S. Al-Haik, m.Y. Hussaini, H. Garmestani, D. Li, K. Dahmen, “Enhancement of Thermal and Electrical Properties of Carbon Nanotube Polymer Composites by magnetic Field Processing”, Journal of Applied Physics (2003), vol. 94, p. 6034
    [45] M.J. Assael, C.F. Chen, I.N. Metaxa, W.A. Wakeham, “Thermal Conductiviety of Suspensions of Carbon Nanotubes in Water”, in: 15th Symposium on Thermophysical Properties, National Institute of Standards, University of Colorado, Boulder, USA (2003)
    [46] M.J. Assael, C.F. Chen, I.N. Metaxa, W.A. Wakeham, “Thermal Conductivity of Suspensions of Carbon Nanotubes in Water”, International Journal of Thermophysics (2004), vol. 25, p. 971
    [47] M.J. Assael, I.N. Metaxa, J. Arvanitidis, D. Christofilos, C. Lioutas, “Thermal Conductivity Enhancement in Aqueous Suspensions of Carbon Multi-Walled and Double-Walled Nanotubes in the Presence of Two Different Dispersants”, International Journal of Thermophysics (2005), vol. 26, p. 647
    [48] H.T. Chien, C.I. Tsai, P.H. Chen, P.Y. Chen, “Improvement on Thermal Performance of a Disk-Shaped Miniature Heat Pipe with Nanofluid”, in: ICEPT 2003, Fifth International Conference on Electronic Packaging Technology, Proceedings (IEEE Cat. No.03Ex750), IEEE, Shanghai, China (2003), p. 389
    [49] N. Putra, W. Roetzel, S.K. Das, “Natural Convection of Nano-Fluids”, Heat and Mass Transfer (2003), vol. 39, p. 775
    [50] D. Wen, Y. Ding, “Formulation of Nanofluids for Natural Convective Heat Transfer Applications”, International Journal of Heat and Fluid Flow (2005), vol. 26, p. 855
    [51] S.K. Das, N. Putra, W. Roetzel, “Pool Boiling of Nano-Fluids on Horizontal Narrow Tubes”, International Journal of Multiphase Flow (2003), vol. 29, p. 1237
    [52] J.P. Tu, N. Dinh, T. Theofanous, ”An Experimental Study of Nanofluid Boiling Heat Transfer”, in: Proceedings of 6th International Symposium on Heat Transfer, Beifing, China (2004)
    [53] P. Vassallo, R. Kumar, S.D. Amico, “Pool Boiling Heat Transfer Experiments in Silica-Water Nano_Fluids”, International Journal of Heat and Mass Transfer (2004), vol.47, p.407
    [54] D. Wen, Y. Ding, “Experimental Investigation into the Pool Boiling Heat Transfer of Aqueous Based □-alumina nanofluids”, Journal of Nanoparticle Research (2005), vol. 5, p. 265
    [55] P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman, “Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)”, International Journal of Heat and Mass Transfer (2002), vol. 45, p. 855
    [56] J.A. Eastman, S.R. Phillpot, S.U.S. Choi, P. Keblinski, “Thermal Transport in Nanofluids”, Annu. Rev. Mater. Res. (2004), vol. 34, p. 219
    [57] W. Yu, S.U.S. Choi, “The Role of Interfacial Layers in the Enhanced Thermal of Nanofluids: A Renovated Maxwell Model”, Journal of Nanoparticle Research (2003), vol. 5, p. 167
    [58] W. Yu, S.U.S. Choi, “The Role of Interfacial Layers in the Enhanced Thermal of Nanofluids: A Renovated Hamilton-Crosser model”, Journal of Nanoparticle Research (2004), vol. 6, p. 355
    [59] L. Xue, P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman, “Effect of Liquid Layering at the Liquid-Solid Interface on Thermal Transport”, International Journal of Heat and Mass Transfer (2004), vol. 47, p. 4277
    [60] A.R.A. Khled, K. Vafai, “Heat Transfer Enhancement Through Control of Thermal Dispersion Effects”, International Journal of Heat and Mass Transfer (2005), vol. 48, p. 183
    [61] D. Wen, Y. Ding, “Effect of Particle Migration on Heat Transfer in Suspensions of Nanoparticles Flowing through Minichannels”, Microfluidics and Nanofluidics (2005), vol. 1, p. 183
    [62] Y. Ding, D. Wen, “Particle Migration in a Flow of Nanoparticle Suspensions”, Powder Technology (2005), vol. 149, p. 84
    [63] J. Koo, C. Kleinstreuer, “Impact Analysis of Nanoparticle Motion Mechanisms on the Thermal Conductivity of Nanofluids”, International Communications in Heat and Mass Transfer (2005), vol. 32, p. 1111
    [64] W. Evans, J. Fish, P. Keblinski, “Role of Brownian Motion Hydrodynamics on Nanofluid Thermal Conductivity”, Applied Physics Letters (2006), vol. 88, 93116
    [65] D. Lee, J.W. Kim, B.G. Kim, “A New Parameter to Control Heat Transport in Nanofluids: Surface Charge State of the Particle in Suspension”, Journal of Physical Chemistry B (2006), vol. 110, p. 4323
    [66] P. Vadasz, “Heat Conduction in Nanofluid Suspensions”, Transactions of the ASME, Journal of Heat Transfer (2006), vol. 128, p. 465
    [67] D.A.G. Bruggeman, “Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen”, Annalen der Physik, Leipzig (1935), vol.24, p. 636
    [68] Q.Z. Xue, “Model for Effective Thermal Conductivity of Nanofluids”, Physics Letters A (2003), vol. 307, p. 313
    [69] H. Xie, M. Fujii, X. Zhang, ”Effect of Interfacial Nanolayer on the Effective Thermal Conductivity of Nanoparticle-Fluid Mixture”, International Journal of Heat and Mass Transfer (2005), vol. 48, p. 2926
    [70] B.X. Wang, L.P. Zhou, X.F. Peng, “A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid with Suspension of Nanoparticles”, International Journal of Heat and Mass Transfer (2003), vol. 46, p. 2665
    [71] S.P. Jang, S.U.S. Choi, “Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids”, Applied Physics Letters (2004), vol. 84, p. 4316
    [72] S.A. Putnam, D.G. Cahill, P.V. Braun, Z. Ge, R.G. Shimmin, “Thermal Conductivity of Nanoparticle Suspensions”, Journal of Applied Physics (2006), vol. 99, 084308
    [73] R. Prasher, P. Bhattacharya, P.E. Phelan, “Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)”, Physical Review Letters (2005), vol. 94, 025901
    [74] J. Koo, C. Kleinstreuer, “A New Thermal Conductivity Model for Nanofluids”, Journal of Nanoparticle Research (2004), vol. 6, p. 577
    [75] J. Koo, C. Kleinstreuer, “Laminar Nanofluid Flow in Micro-Heat Sinks”, International Journal of Heat and Mass Transfer (2005), vol. 48, p. 2652
    [76] C.W. Nan, Z. Shi, Y. Lin, “A Simple Model for Thermal Conductivity of Carbon Nanotube-Based Composites”, Chemical Physics Letters (2003), vol. 375, p. 666
    [77] L. Gao, X.F. Zhou, “Differential Effective Medium Theory for Thermal Conductivity in Nanofluids”, Physics Letters A , in press
    [78] Q.Z. Xue, “Model for Thermal Conductivity of Carbon Nanotube-Based Composites”, Physica B: Condensed Matter (2005), vol. 368, p. 302
    [79] E.J. Wasp, J.P. Kenny, R.L. Gandhi, “Solid-Liquid Slurry Pipeline Transprotation”, Bulk Materials Handling, Trans Tech Publications, Germany (1999)
    [80] Q. Xue, W.M. Xu, “A Model of Thermal Conductivity of Nanofluids with Interfacial Shells”, Materials Chemistry and Physics (2005), vol. 90, p. 298
    [81] Y. Xuan, Q. Li, W. Hu, “Aggregation Structure and Thermal Conductivity of Nanofluids”, AIChE Journal (2003), vol. 49, p. 1038
    [82] D.H. Kumar, H.E. Patel, V.R.R. Kumar, T. Sundararajan, T. Pradeep, S.K. Das, “Model for Heat Conduction in Nanofluids”, Physical Review Letters (2004), vol.93, 144301
    [83] P. Bhattacharya, S.K. Saha, A. Yadav, P.E. Phelan, R.S. Prasher, “Brownian Dynamics Simulation to Determine the Effective Thermal Conductivity of Nanofluids”, Journal of Applied Physics (2004), vol. 95, p. 6492
    [84] S.E.B. Maiga, C.T. Nguyen, N. Galanis, G. Roy, “Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube”, Superlattices and Microstructures (2004), vol.35 p. 543
    [85] S.E.B. Maiga, C.T. Nguyen, N. Galanis, G. Roy, “Hydordynamic and Thermal Behaviours of a Nanofluid in a Uniformly Heated Tube”, in: Computational Studies, WIT Press, Southampton, SO40 7AA, United Kingdom, Lisbon, Portugal (2004), vol. 5, p. 453
    [86] X.Q. Wang, A.S. Mujumdar, C. Yap, “Free Convection Heat Transfer in Horizontal and Vertical Rectangular Cavities Filled with Nanofluids”, in: International Heat Transfer Conference IHTC-13, Sydney, Australia, (August 2006)
    [87] K. Khanafer, K. Vafai, M. Lightstone, “Bouyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids”, International Journal of Heat and Mass Transfer (2003), vol. 39, p. 775
    [88] Y. Xuan, W. Roetzel, “Conceptions for Heat Transfer Correlation of Nanofluids”, International Jorunal Heat and Mass Transfer (2000), vol. 43, p. 3701
    [89] Y. Xuan, Z. Yao, “Lattice Boltzmann Model for Nanofluids”, Heat and Mass Transfer/Waerme-und Stoffuebertragung (2005), vol. 41, p. 199
    [90] Y. Xuan, K. Yu, Q.Li, “Investigation on Flow and Heat Transfer of Nanofluids by the Thermal Lattice Boltzmann Model”, Progress in Computational Fluid Dynamics (2005), vol. 5, p. 13
    [91] J. Eapen, J. Li, S. Yip, “Mechanism of Thermal Transport in Dilute Nanocolloids”, Physical Review Letter (2007), Vol. 98, 028302
    [92] J. Evans, and G.P. Morriss, Statistical Mechanics of Nonequilibrium Liquids, Academic, London (1990)
    [93] J.E. Lennard-Jones, “The determination of molecular fields, I. From the variation of the viscosity of a gas with temperature”, Proceedings of the Royal Society, London (1924), Vol. 106A, p. 441; “The Determination of Molecular Fields. II. From the Equation of State of Gas”, Proceedings of the Royal Society, London (1924), Vol. 106A, pp.463
    [94] S. Maruyama, “Molecular dynamics method for microscale heat transfer”, Advances in numerical heat transfer (2000), Vol. 2, p.189
    [95] C.L. Kong, “Combining rules for intermolecular potential parameters. II. Rules for the Lennard-Jones(12-6) potential and the Morse potential”, Journal of Chemical Physics (1973), Vol. 59, p.2464
    [96] Florian Müller-Plathe, “A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity”, J. Chem. Phys. (1997), vol. 106, p. 6082
    [97] Florian Müller-Plathe, “Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids”, Phys. Rev. E (1999), vol. 59, p. 4894
    [98] Patrice Bordat and Florian Müller-Plathe, “The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics”, J. Chem. Phys. (2002), vol. 116, pp. 3362
    [99] J.P. Hansen, and I.R. McDonald, Theory of Simple Liquids, (2nd ed.) Academic Press, New York (1986)
    [100] Y. Ren, H. Xie, and A. Cai, “Effective Thermal Conductivity of Nanofluids Containing Spherical Nanoparticles”, Journal of Physics D: Applied Physics (2005), Vol. 38, p. 3958
    [101] W. Evans, J. Fish, and P. Keblinski, “Role of Brownian Motion Hydrodynamics on Nanofluid Thermal Conductivity”, Applied Physics Letters (2006), Vol. 88, 093116
    [102] M. Vladkov and J.L. Barrat, “Modeling Transient Absorption and Thermal Conductivity in a Simple Nanofluid”, Nano Letters (2006), Vol. 6, p. 1224
    [103] L. Xue, P. Keblinski, S.R. Phillpot, S.U.S. Choi, and J.A. Eastman, “Two Regimes of Thermal Resistance at a Liquid-Solid Interface”, Journal o f Chemical Physics (2003), Vol. 118, p. 337
    [104] T. Ohara, and D. Torii, “Molecular Dynamics Study of Thermal Phenomena in an Ultrathin Liquid Film Sheared between Solid Surfaces: The Influence of the Crystal Plane on Energy and Momentum Transfer at Solid-Liquid Interfaces”, Journal of Chemical Physics (2005), Vol.122, 214717
    [105] R. Khare, P. Keblinski, and A. Yethiraj, “Molecular Dynamics Simulations of Heat and Momentum Transfer at a Solid-Fluid Interface: Relationship between Thermal and Velocity Slip”, International Journal of Heat and Mass Transfer (2006), Vol. 49, p. 3401

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE