簡易檢索 / 詳目顯示

研究生: 林庭安
Lin, Ting-An
論文名稱: 降低行動裝置上大型時間尺度傳輸排程的資源消耗
Reducing Training Overhead of Large Time-Scale Transfer Scheduling for Mobile Devices
指導教授: 徐正炘
Hsu, Cheng-Hsin
口試委員: 彭文志
Peng, Wen-Chih
林柏青
Lin, Po-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 30
中文關鍵詞: 行動裝置排程叢集
外文關鍵詞: mobile device, scheduling, clustering
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們專注於大型時間尺度(數分鐘到數小時)下的傳 輸排程,它提供了更大的傳輸效能改進空間,這是我們與大多數在頻道感知排程方面的研究不同之處 。 我們在Android平台上設計、實作和驗證了一個基於馬可夫決策理論的框架用來分析使用者行為並排程傳輸。 我們的模擬結果顯示,現實中的行動裝置裝使用者可以受益於我們的框架。 舉例來說,50%的使用者享受到20%-90%的傳輸速度提升與15分鐘的平均延遲,當截止時間為40分鐘時。
    此外,我們的量化與降低產生排程演算法參數的資源消耗。 我們指出了產生排程演算法參數的最佳使用者資料長度為30天。我們用不同的聚類演算法對使用者進行分組,以減少產生排程演算法參數的資源消耗。藉由使用從真實的使用者收集到的資料,我們指出了聚類演算法最佳參數。 同時,我們的聚類演算法,可以減少產生排程演算法參數的資源消耗,但不會損失太多的效能。 當使用了我們的演算法,可以節省產生排程演算法參數的時間高達59.9%,但只導致了小於18%的效能下降。


    In this thesis, we focus on large time-scale scheduling of mobile data transfer, e.g., in minutes or hours. Such large time-scale provides significantly more room for performance improvement in real-life scenarios, which
    differs our work from most existing channel-aware scheduling studies.
    In particular, we design, implement, and evaluate a framework for profiling and scheduling based on Markov decision theory, using the Android platform. Our trace-driven simulations show that mobile users in real-life scenarios can benefit significantly from our framework. For example, 50% of mobile users will enjoy 20%-90% throughput improvement with a deadline guarantee of 40 minutes and an average delay of 15 minutes.
    In addition, we quantify and reduce the overhead of generating model parameters of the proposed scheduling algorithms. We determine the best training window size: 30 days. We adopt various clustering algorithms to group
    users in order to reduce training overhead. We empirically determine the best system parameters of the clustering algorithms using real traces. Our clustering algorithms reduce the training overhead without sacrificing too much
    performance: it saves up to 59.9% of training time while incurring <18% performance degradation.

    Acknowledgments Abstract 1 Introduction 2 Related Work 2.1 Large Time-scale Transfer Scheduling 2.2 Mobile User Clustering 3 Large Time-scale Transfer Scheduling 6 3.1 UPDATE Framework 3.2 Markov Decision Process 3.2.1 Optimal Stopping Problem 3.3 Scheduling Algorithms 3.3.1 Scheduling Model 3.3.2 Optimal Stopping Scheduling (OSS) 3.3.3 Lightweight Optimal Stopping Scheduling (OSSL) 3.3.4 Batched Optimal Stopping Scheduling (BOSS) 3.3.5 Lightweight Batched Optimal Stopping Scheduling(BOSSL) 3.4 Trace-Driven Simulations 3.4.1 An UPDATE-enabled Application: PhotoSync 3.4.2 Profiling Analysis 3.4.3 Profiling Overhead 3.4.4 Energy Model 3.4.5 Simulators Implementation . 3.4.6 Simulation Results 4 Quantify and Reduce Training Overhead 4.1 Training Window Size 4.2 Limitations of OSS 4.3 Implication of Training Window Size 4.3.1 Single-Job Scheduling 4.3.2 Multiple-Job Scheduling 4.4 Reducing Model Derivation Overhead 4.4.1 User Clustering 4.4.2 Impact of System Parameters 4.4.3 Performance Impact 4.4.4 Reducing Time Overhead 5 Conclusion and Future Work Bibliography

    [1] Photosync. https://play.google.com/store/apps/details?id=com.metaisle.photosync.
    [2] User’s guide, 66321B/D mobile communications dc source. http://cp.literature.agilent.com/litweb/pdf/5964-8184.pdf.
    [3] 3GPP TS 36.211. Evolved universal terrestrial radio access (E-UTRA); physical
    channels and modulation. http://www.3gpp.org/specifications.
    [4] A. Balasubramanian, R. Mahajan, and A. Venkataramani. Augmenting mobile 3G using WiFi. In Proc. of ACM International Conference on Mobile Systems, Applications, and Services (MobiSys’10), June 2010.
    [5] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. Energy consumption in mobile phones: a measurement study and implications for network applications. In ACM SIGCOMM Conference on Internet Measurement Conference (IMC’09), November 2009.
    [6] M. Bayir, N. Eagle, and M. Demirbas. Discovering spatiotemporal mobility profiles of cellphone users. In Proc. of IEEE International Symposium on a World of
    Wireless, Mobile and Multimedia Networks (WoWMoM ’09), June 2009.
    [7] S. Ha, S. Sen, C. Joe-Wong, Y. Im, and M. Chiang. TUBE: Time-dependent pricing for mobile data. In Proc. of ACM SIGCOMM’12, August 2012.
    [8] J. Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc.,
    San Francisco, California, USA, 2005.
    [9] W. Hsu, D. Dutta, and A. Helmy. Structural Analysis of User Association Patterns
    in University Campus Wireless LANs. IEEE Transactions on Mobile Computing,11(11), 2012.
    [10] W. Hsu, T. Spyropoulos, K. Psounis, and A. Helmy. Modeling timevariant user mobility in wireless mobile networks. In Proc. of IEEE International Conference on
    Computer Communications (INFOCOM ’07), May 2007.
    [11] H. Lu, S. Tseng, and S. Yu. Mining cluster-based temporal mobile sequential patterns in location-based service environments. IEEE Transactions on Knowledge and
    Data Engineering, 23(6), 2011.
    [12] H. Ma, H. Cao, Q. Yang, E. Chen, and J. Tian. A habit mining approach for dis-
    covering similar mobile users. In Proc. of ACM International Conference on World Wide Web (WWW ’12), April 2012.
    [13] P. Mohan, S. Nath, and O. Riva. Prefetching mobile ads: can advertising systems
    afford it? In Proc. of the ACM European Conference on Computer Systems (EuroSys’13), April 2013.
    [14] M. Ra, J. Paek, A. Sharma, R. Govindan, M. Krieger, and M. Neely. Energy-delay tradeoffs in smartphone applications. In Proc. of ACM International Conference on
    Mobile Systems, Applications, and Services (MobiSys’10), June 2010.
    [15] A. Schulman, V. Navda, R. Ramjee, N. Spring, P. Deshpande, C. Grunewald, K. Jain, and V. Padmanabhan. Bartendr: A practical approach to energy-aware cellular data
    scheduling. In Proc. of ACM Annual International Conference on Mobile Computing and Networking (MobiCom’10), September 2010.
    [16] I. Trestian, S. Ranjan, A. Kuzmanovic, and A. Nucci. Taming user-generated content in mobile networks via drop zones. In Proc. of IEEE International Conference on
    Computer Communications (Infocom ’11), April 2011.
    [17] T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu. Fast app launching for mobile devices using predictive user context. In Proc. of the ACM International Conference on Mobile Systems, Applications, and Services (MobiSys ’12), June 2012.
    [18] J. Ying, H. Lu, W. Lee, T. Weng, and S. Tseng. Mining user similarity from semantic
    trajectories. In Proc. of ACM International Workshop on Location Based Social Networks (LBSN ’10), November 2010.
    [19] Y. Zheng, L. Zhang, X. Xie, and W. Ma. Mining interesting locations and travel sequences from gps trajectories. In Proc. of ACM International Conference on World Wide Web (WWW ’09), April 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE