研究生: |
林亭佑 Lin, Ting-You |
---|---|
論文名稱: |
STM與STS研究Ag(111)表面上的Extended Phenacene Extended Phenacenes on Ag(111) in STM and STS |
指導教授: |
霍夫曼
Hoffmann, Germar |
口試委員: |
唐述中
Tang, Shu-Jung 蘇維彬 SU, Wei-Bin |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 73 |
中文關鍵詞: | 量子穿隧顯微鏡 、有機半導體材料 、有機分子 |
外文關鍵詞: | STM, Phenacene, OFET |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,我提出了對在 Ag(111) 上製備的Dibenzo[7]Phenacene (以下簡稱為 DB7P) 的研究。 我們使用溫度 77 K 並於超高真空環境中操作的掃描穿隧顯微鏡 (STM) 和掃描穿隧能譜 (STS) 實驗。我將討論 DB7P 在 Ag(111) 上的第一層和第二層的吸附幾何形狀以及自組裝結構的形成。以及透過 STS 測量來探討電子特性,例如能帶結構和態密度。為了優化日常實驗流程,我們使用 Arduino 以控制系統並實現自動化與遠端控制。透過 Arduino,我們可以藉由電腦遠端控制電子設備,以記錄所需的資訊並更精確地進行實驗。在此篇論文中,Arduino 控制主要探討於熱電偶讀數和電源供應的讀取。
In this thesis, I present my study on DiBenzo[7]Phenacene, in the following denoted as DB7P, prepared on Ag(111). We use an STM operated at 77 K and under ultra-high vacuum for STM (Scanning Tunneling Microscopy) and STS (Scanning Tunneling Spectroscopy) experiments. I will discuss the adsorption geometry and the formation of self-assembled structures of DB7P on Ag(111) for both the first and second layers. Electronic properties, such as the band structure and density of states, are addressed with STS measurements. The results are compared with those obtained on DB6P, which was studied in the same system, with Yu-Feng Yeh.
To optimize routine experimental processes, we developed Arduino software for automation and remote control. Using an Arduino, we can remotely control electronic devices via a computer to record all information we need and get more accurate access to the experiment. Here, the Arduino control mainly focuses on the readout of thermocouples and a power supply.
[1] B. E. Deal and A. S. Grove. General relationship for the thermal oxidation of silicon. J. Appl. Phys., 36(12):3770–3778, December 1965.
[2] M. F. Ceiler, P. A. Kohl, and S. A. Bidstrup. Plasma-enhanced chemical vapor deposition of silicon dioxide deposited at low temperatures. Journal of The Electrochemical Society, 142(6):2067, 1995.
[3] N. Saito, T. Sawabe, J. Kataoka, T. Ueda, T. Tezuka, and K. Ikeda. High performance in-zn-o fet with high on-current and ultralow (¡1020 a/μm) offstate leakage current for si cmos beol application. In 2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), volume 26th, pages 1–4, 2019.
[4] Qiuhui Li, Shibo Fang, Shiqi Liu, Lin Xu, Linqiang Xu, Chen Yang, Jie Yang, Bowen Shi, Jiachen Ma, Jinbo Yang, Ruge Quhe, and Jing Lu. Performance limit of ultrathin gaas transistors. ACS Appl. Mater. Interfaces, 14(20):23597–23609, May 2022.
[5] Takeshi Yasuda, Takeshi Goto, Katsuhiko Fujita, and Tetsuo Tsutsui. Ambipolar pentacene field-effect transistors with calcium source-drain electrodes.
Applied Physics Letters, 85(11):2098–2100, September 2004.
[6] A. Ravikumar Reddy and Michael Bendikov. Diels–alder reaction of acenes with singlet and triplet oxygen – theoretical study of two-state reactivity. Chemical Communications, (11):1179, 2006.
7] Hideki Okamoto, Naoko Kawasaki, Yumiko Kaji, Yoshihiro Kubozono, Akihiko Fujiwara, and Minoru Yamaji. Air-assisted high-performance field-effect transistor with thin films of picene. Journal of the American Chemical Society, 130(32):10470–10471, July 2008.
[8] Yanting Zhang, Ritsuko Eguchi, Shino Hamao, Kenta Goto, Fumito Tani, Minoru Yamaji, Yoshihiro Kubozono, and Hideki Okamoto. Photochemical synthesis and device application of acene–phenacene hybrid molecules, dibenzo[n]phenacenes (n = 5–7). Chemical Communications, 57(39):4768–4771, 2021.
[9] G. Binnig, H. Rohrer, Ch. Gerber, and E.Weibel. Surface studies by scanning tunneling microscopy. PRL, 49(1):57–61, July 1982.
[10] C. Julian Chen. Introduction to scanning tunneling microscopy, September 2007.
[11] Akash Gupta. On-surface polymerization. 2021.
[12] Peijie Sun, Beipei Wei, Jiahao Zhang, Jan M. Tomczak, A. M. Strydom, M. Søndergaard, Bo B. Iversen, and Frank Steglich. Large seebeck effect by charge-mobility engineering. Nature Communications, 6(1):7475, 2015.
[13] Andreas Jeindl, Jari Domke, Lukas H¨ormann, Falko Sojka, Roman Forker, Torsten Fritz, and Oliver T. Hofmann. Nonintuitive surface self-assembly of functionalized molecules on ag(111). ACS Nano, 15(4):6723–6734, March 2021.
[14] Yun-Jae Lee, Trinh Thi Ly, Taehun Lee, Kriszti´an Palot´as, Se Young Jeong, Jungdae Kim, and Aloysius Soon. Completing the picture of initial oxidation on copper. Applied Surface Science, 562:150148, October 2021.
[15] Ayelet Vilan and David Cahen. Chemical modification of semiconductor surfaces for molecular electronics. Chemical Reviews, 117(5):4624–4666, February 2017.
16] Wenyong Wang, Takhee Lee, and M. A. Reed. Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Physical Review B, 68(3):035416, July 2003.
[17] Xi Hu, Teng Wang, Faqi Li, and Xiang Mao. Surface modifications of biomaterials in different applied fields. RSC Advances, 13(30):20495–20511, 2023.
[18] Jilei Liu, Matthew B. Uhlman, Matthew M. Montemore, Antonios Trimpalis, Georgios Giannakakis, Junjun Shan, Sufeng Cao, Ryan T. Hannagan, E. Charles H. Sykes, and Maria Flytzani-Stephanopoulos. Integrated catalysis-surface science-theory approach to understand selectivity in the hydrogenation of 1-hexyne to 1-hexene on pdau single-atom alloy catalysts. ACS Catalysis, 9(9):8757–8765, August 2019.
[19] Hayk Khachatryan, Sung-Nam Lee, Kyoung-Bo Kim, and Moojin Kim. Deposition of al thin film on steel substrate: The role of thickness on crystallization and grain growth. Metals, 9(1):12, December 2018.
[20] Yanting Zhang, Shino Hamao, Hidenori Goto, Yoshihiro Kubozono, Hideki Okamoto, Kunihisa Sugimoto, Nobuhiro Yasuda, Akihiko Fujiwara, and Ritsuko Eguchi. Charge transport capabilities of dibenzo[n]phenacenes (n = 5–7): Influence of trap states and molecular packing. The Journal of Physical Chemistry C, 126(44):18849–18854, October 2022.
[21] Ritsuko Eguchi, Xuexia He, Shino Hamao, Hidenori Goto, Hideki Okamoto, Shin Gohda, Kaori Sato, and Yoshihiro Kubozono. Fabrication of high performance/ highly functional field-effect transistor devices based on [6]phenacene thin films. Phys. Chem. Chem. Phys., 15(47):20611–20617, 2013.
[22] Yasuyuki Sugawara, Yumiko Kaji, Keiko Ogawa, Ritsuko Eguchi, Shohei Oikawa, Hiroyuki Gohda, Akihiko Fujiwara, and Yoshihiro Kubozono. Characteristics of field-effect transistors using the one-dimensional extended hydrocarbon [7]phenacene. Appl. Phys. Lett., 98(1):013303, January 2011.
[23] Yalda Safaralipour and Mustafa Karag¨uler. Improving the thermal and insulation properties of polypropylene fiber reinforced concrete facade panels using phase change material (pcm): An experimental analysis. Civil Engineering and Architecture, 11:2201–2218, July 2023.
[24] Abhishek Singh, Ting You Lin, Yu Feng Yeh, Hideki Okamoto, and
Germar Hoffmann. Vertical intermolecular electronic communication in
dibenzo[6]phenacene on ag(111). The Journal of Physical Chemistry C,
128(33):14065–14074, August 2024.
[25] Song-Wen Chen, I-Chen Sang, Hideki Okamoto, and Germar Hoffmann. Adsorption of phenacenes on a metallic substrate: Revisited. The Journal of Physical Chemistry C, 121(21):11390–11398, May 2017.
[26] Haik Jamgotchian, Yann Colignon, B´en´edicte Ealet, Bence Parditka, Jean-Yves Hoarau, Christophe Girardeaux, Bernard Aufray, and Jean-Paul Bib´erian. Silicene on ag(111): domains and local defects of the observed superstructures. Journal of Physics: Conference Series, 491:012001, March 2014.
[27] S. L. Wong, H. Huang, W. Chen, and A. T. S. Wee. Stm studies of epitaxial graphene. MRS Bulletin, 37(12):1195–1202, 2012.