簡易檢索 / 詳目顯示

研究生: 康慧貞
Hui Jane Kang
論文名稱: 鐵鋁介金屬粉末冶金與相變化研究
The phase transformation and P/M processing study on Fe-Al intermetallics
指導教授: 胡塵滌
Chen-Ti Hu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 110
中文關鍵詞: 介金屬化合物粉末冶金無壓燒結中間相複合材高溫性質
外文關鍵詞: intermetallic compound, iron aluminum, powder metallurgy, sintering
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的第一部份研究純鐵鋁混粉燒結升溫過程相變化,結果證明在Fe-28 at.%Al純鐵鋁混粉升溫時,中間相Fe2Al5出現的溫度為550℃,並於850℃完全消失,此中間相顯微結構疏鬆多孔,與純粉混合燒結時發生之膨脹有直接關係,且伴隨此相的生成,於極短時間內釋放大量的反應熱。依本研究結果,建議純鐵鋁粉末燒結反應機制如下:
    3Fe+Al →1/5 Fe2Al5 +13/5Fe ......□ T≧550℃
    13/5Fe+1/5Fe2Al5 → Fe3Al .......□ 850℃≧T≧650℃
    由於Fe2Al5相具有鬆脆的性質,熔點低(1169℃),可散佈於Fe-Al試片中,具有第二相粒子的作用,幫助減少Fe-Al試片承受冷滾壓中產生的裂縫延伸,對於提升Fe3Al成品機械性質很有幫助。
    本論文第二個部份以管狀真空爐和滾壓機等簡單設備,無壓粉末冶金方法製作大尺寸(145 mm×20 mm×3mm)的Fe3Al成品。實驗結果顯示Fe3Al成品具有良好的延展性(~4.8%)、緻密性(96%)及不錯的強度(~500MPa)。添加α-Al2O3粉製作Fe3Al基複合材的實驗結果顯示增加α-Al2O3粉含量降低Fe3Al基複合材的晶粒尺寸,推知α-Al2O3粉阻礙晶粒成長,且降低試片中的孔隙率,提高試片密度。觀察Fe3Al基複合材拉伸斷裂面可見α-Al2O3粉與Fe3Al基地材間具有相當好接合力,但並未有擴散反應產生。實驗中採用熱機處理(TMT)可以大幅提高Fe3Al基複合材的延展性,且本研究之無壓燒結的Fe3Al基複合材試片於高溫延展性較已有文獻為優良。


    第一章 前言□□□□□□□□□□□□□□□□□□□□□□□□□ 第二章 文獻回顧□□□□□□□□□□□□□□□□□□□□□□□ 2-1 介金屬化合物的定義及應用發展□□□□□□□□□□□□□ 2-2 鐵鋁介金屬化合物□□□□□□□□□□□□□□□□□□□ 2-2-1 鐵鋁介金屬化合物的簡介□□□□□□□□□□.. 2-2-2 Fe-Al純粉燒結膨脹現象之探討□□□□□□□□ 2-2-3 Fe3Al的粉末冶金製程介紹□□□□□□□□□□ 2-2-4 有關鐵鋁介金屬化合物的應力腐蝕研究□□□□.. 2-2-5 鐵鋁基複合材相關研究□□□□□□□□□□□.. 2-2-6 有關Fe2Al5相相關之研究□□□□□□□□□□.. 2-2-7 Ni3Al、Fe3Al介金屬化合物放熱峰之研究□□□.. 第三章 Fe-Al反應性燒結膨脹現象之的研究□□□□□□□□□. 3-1 前言□□□□□□□□□□□□□□□□□□□□□□□□□ 3-2 實驗方法□□□□□□□□□□□□□□□□□□□□□□□ 3-2-1 混粉配製□□□□□□□□□□□□□□□□□.. 3-2-2 試片成形□□□□□□□□□□□□□□□□□.. 3-2-3 TTT研究□□□□□□□□□□□□□□□□….. 3-2-4 放熱峰之研究□□□□□□□□□□□□□□□.. 3-2-5 微觀結構與成分分析□□□□□□□□□□□□.. 3-2-6 Fe-Al反應過程之體積變化分析□□□□□□□□ 3-2-7 Fe2Al5粉之製備□□□□□□□□□□□□□□□ 3-3 實驗結果與討論□□□□□□□□□□□□□□□□…... 3-3-1 Fe2Al5相的形成過程□□□□□□□□□□□□□ 3-3-2 反應時間、溫度與相變化(TTT)之討論□□□□□ 3-3-3 Fe-Al作反應性燒結過程中的相變化討論□□□□ 3-3-4 Fe2Al5相之微硬度測試壓痕觀察□□□□□□□□ 3-4 結論□□□□□□□□□□□□□□□□□□□□□□... 第四章 以純Fe粉、Fe2Al5粉製作Fe3Al之研究□□□□□□□□ 4-1 前言□□□□□□□□□□□□□□□□□□□□□□□□□ 4-2 實驗方法□□□□□□□□□□□□□□□□□□□□□□□ 4-2-1 混粉配製□□□□□□□□□□□□□□□□□.. 4-2-2 反應性燒結□□□□□□□□□□□□□□□□.. 4-2-3 微觀結構與成份分析□□□□□□□□□□□□.. 4-2-4 機械性質測試□□□□□□□□□□□□□□□.. 4-3 實驗結果與討論□□□□□□□□□□□□□□□□□... 4-3-1 燒結過程之相變化討論□□□□□□□□□□□.. 4-3-2 機械性質討論□□□□□□□□□□□□□□□.. 4-4 結論□□□□□□□□□□□□□□□□□□□□□□... 第五章 以純Fe粉、Fe2Al5粉,添加α-Al2O3製作Fe3Al基複合材之研究□□□□□□□□□□□□□□□□□□□□□... 5-1 前言□□□□□□□□□□□□□□□□□□□□□□□□□ 5-2 實驗方法□□□□□□□□□□□□□□□□□□□□□□□ 5-2-1 混粉配製□□□□□□□□□□□□□□□□□.. 5-2-2 反應性燒結□□□□□□□□□□□□□□□□.. 5-2-3 微觀結構與成份分析□□□□□□□□□□□□.. 5-2-4 磨耗實驗□□□□□□□□□□□□□□□□□.. 5-2-5 機械性質測試□□□□□□□□□□□□□□□.. 5-3 實驗結果與討論□□□□□□□□□□□□□□□□□.. 5-3-1 相分析□□□□□□□□□□□□□□□□□□.. 5-3-2 微結構分析□□□□□□□□□□□□□□□….. 5-3-3 添加α-Al2O3對機械性質的影響□□□□□□□… 5-3-4 高溫機械性質研究□□□□□□□□□□□□□.. 5-4 結論□□□□□□□□□□□□□□□□□□□□□□□□□ 第六章 總結與未來的展望□□□□□□□□□□□□□□□□□□□ 參考文獻□□□□□□□□□□□□□□□□□□□□□□□□□

    參考文獻
    1. G. Sauthoff, Intermetallics, pp.3-8 (1993)。
    2. K. Aoki and O. Izumi, “Improvement in room-temperature ductility of the L12 type intermetallic compound Ni3Al by boron addition”, Trans. JIM 43, pp.1190-1196 (1979) 。
    3. C.G. Mckamey, J.H. Devan, P.F. Tortorelli, and V.K. Sikka, “A review of recent developments in Fe3Al-based alloys”, J. Mater. Res., 6(8), pp.1779–1805 (1991)。
    4. C.T. Liu and K.S. Kumar, “Ordered intermetallic alloys, part I. nickel and iron aluminides”, J. Met. 45 5, pp.38–42 (1993)。
    5. V.K. Sikka, R.H. Baldwin, C.R. Howell, and J.H. Reinshagen, in: Proceedings of the Conference on Advances in Powder Metallurgy 1991 on Aerospace, Refractory and Advanced Materials, vol. 6, Chicago, IL, June, pp.147–158 (1991).
    6. J.H. DeVan, in: T. Grobstein and J. Doychak (Eds.), Oxidation of High-temperature Intermetallics, TMS, Warrendale, PA, pp.107–110 (1989)。
    7. C.T. Liu, E.H. Lee, and C.G. Mckamey, “An environmental effect as the major cause for room-temperature embrittlement in FeAl”, Scripta Metall.23, pp.875-880(1989)。
    8. C.T. Liu, C.G. Mckamey, and E.H. Lee, “Environmental effects on room-temperature ductility and fracture in Fe3Al”, Scripta Metall.24, pp.385-389(1990)。
    9. M.G. Mendiratta, S.K. Ehlers, D.K. Chatterjee, and H.A. Lipsitt., “Tensile flow and fracture behavior of DO3 Fe-25 at. pct Al and Fe-31 at. pct Al alloys”, Metall. Trans. A 18, pp. 283–291 (1987).
    10. C. G. Mckamey, J. H. Devan, P. F. Tortoreli, and V. K. Sikka, J .Mater. Res. 6, pp.1779–1801 (1991)。
    11. B.H. Rabin and R.N. Wright, “Synthesis of iron aluminides from elemental powders: reaction mechanisms and densification behavior”, Metall.Trans. 22A, pp.277–286 (1991)。
    12. P. Johansson, B. Uhrenius, A. Wilson, and U. Stahlerg, “Processing, fabrication, and mechanical properties of Fe3Al based PM alloys”, Powder Metallurgy 39, pp.53-58 (1996)。
    13. V.K. Sikka, R.H. Baldwin, J.H. Reinshagen, J.R. Knibloe, and R.N. Wright, in: L.A. Johnson, D.P. Pope and J.O. Stiegler (Eds.), Proceedings of the MRS Symposium on High-temperature Ordered Intermetallic Alloys IV, 213, Pittsburgh, PA, pp. 901–906 (1991)。
    14. E.M. Schulson., Int. J. Powder Metall. 23 1, pp. 25–28 (1987)。
    15. V.K. Sikka, R.H. Baldwin and C.R. Howell, in: E.R. Andreotti (Ed.), Proceedings of the Conference on Advances in Powder Metallurgy 1990, vol. 2, Metal Powder Industries Federation, Princeton, NJ, pp. 207–217 (1990)。
    16. L.Z. Zhuang, L. Buekenhout, and J. Duszcyzyk, “Reaction phase-forming and mechanical properties of Fe3Al produced from elemental powders”, Scripta Metall. Mater., 30 7, pp. 909-914 (1994)。
    17. P. Nagpal and I. Baker, “Extrusion characteristics of iron aluminides”, Mater. Manuf. Process. 6 (4), pp. 695–707 (1991)。
    18. B.H. Rabin and R.N. Wright, “Microstructure and tensile properties of Fe3Al produced by combustion synthesis/hot isostatic pressing”, Metall. Trans. A 23, pp.35–40 (1992)。
    19. 邱文智 博士論文 〝鎳鋁介金屬化合物及其複合材之粉末製程研究〞, 清華大學 (1994)。
    20. 吳瑞城 碩士論文 〝鐵鋁介金屬化合物粉末冶金製程之研究〞, 清華大學 (1996)。
    21. O. Izumi 〝金屬間化合物〞,產業圖書株式會社,東京,日本pp.54–59 (1988)。
    22. Idem, ibid 21, pp.336–340 (1992)。
    23. Metals Handbook, 10th , 2, ASM, Ohio USA , pp.914 (1990)。
    24. E.P. George and C.T. Liu, “Brittle fracture and ductility improvement in nickle and aluminides”, Y. Han (ed.), Advanced Structural Materials, Elsevier Science Publishers, pp.621-633 (1991)。
    25. D. Shechtman, MJ. Blackburn, and H.A. Lipsitt, “Plastic deformation of TiAl”, Metall. Trans., 5 (6), pp.1373-1381 (1974)。
    26. M. J. Blackburn and M.P. Smith, ”R&D on Composition and Processing of Titanium Aluminide Alloys for Turbine engines”(Report AFWAL-TR-82-4086,1982)。
    27. D. Banerjee, T.K. Nandy, and A.K. Gogia, “Site Occupation in the Ordered Beta Phase of Ternary Ti-Al-Nb Alloys”, Scripta.Metall., 21, pp.597-600 (1987)。
    28. T.B. Massalski, Binary Alloy Phase Diagrams, 2nd ed., vol. 147, ASM International, Metals Park, OH, pp.148 (1990)。
    29. V. R. Ryabov: “Aluminizing of steel”; New Delhi, Oxonian Press (1985)。
    30. M. L. Hughes and D. P. Moses, Metallurgia, Sept, pp.105-109 (1953)。
    31. L. N. Laikov, V. V. Geichenko, and V. M. Falchenko, Diffusion Processes in Ordered Alloys, (1981), New Delhi, Amerind Publishers。
    32. L. N. Larikov, V. M. Fal’chenko, D. F. Polishuk, V. R. Ryabov, and A. V. Lozovskaya, Prot. Coat. Met. 3, pp.66-69 (1971)。
    33. L. N. Larikov, V. M. Fal’chenko, D. F. Polishuk, V. R. Ryabov, and A. V. Lozovskaya, Prot. Coat. Met. 5, pp.116-122 (1973)。
    34. J. Fridberg, L. E. Torndahl, and M. Hillert, Jernkontorets Ann. 153, pp.263 (1969)。
    35. T. S. Lundy and J. F. Murdock, J. Appl. Phys. 33, 5, pp.1671-1375 (1962)。
    36. T. Heumann and H. Bohmer, Arch. Eisenhuttenwes. 31, pp.749 (1960)。
    37. R. W. Richard, R. D. Jones, P. D. Clements, and H. Clark, Int. Mat. Rev. 39, 5, pp.191-212 (1994)。
    38. Metals Handbook, vol. 63, 10th Edition, ASM International, (1992)。
    39. Bulletin of Binary Phase Diagrams, ASM International, U.R.Kattner and B.P.Burton in Metalls Handbooks, 3, pp.2-44 (1994)。
    40. J. F. Nachman and W. J. Buehler, Application , Properties and Fabrication of Thermal Type Alloys, NAVORD Report 4237。
    41. J. S. Sheasby, “Powder Metallurgy of Iron-Aluminum”, Int. J. Powder Metall. Powder Technol. 15, 4, pp.301–305 (1979)。
    42. D. J. Lee and R. M. German., “Sintering behavior of iron-aluminum powder mixes”, Int. J. Powder Metall. Powder Technol. 21, 1, pp.9–14 (1985)。
    43. A. P. Savitskii and N. N. Burtesv, “Effect of powder particle size on the growth of titanium compacts during liquid-phase sintering with aluminum”, Sov. Powder Metall. Met. Ceram. 20, pp.618–621 (1981)。
    44. A. P. Savitskii, N. N. Burtesv, and L. S. Martsunova., “Volume changes experienced by Al-Zn compacts during liquid-phase sintering”, Sov. Powder Metall. Met. Ceram. 21, pp.760–764 (1982)。
    45. R. M. German and J. W. Dunlap, “Processing of iron-titanium powder mixtures by transient liquid phase sintering”, Metall. Trans. 17A, pp.205-213 (1986)。
    46. A. P. Savitskii, L. S. Martsunova and M. A. Emelyanova., “Compact porosity changes in liquid-phase sintering due to diffusional interaction between phases”, Sov. Powder Metall. Met. Ceram. 20, pp.4-9 (1981)。
    47. H. Danninger, “Homogenization and pore formation during sintering with transient liquid phase”, Powder Metall. Int. 20 1, pp.21-25 (1988)。
    48. B. H. Rabin, R. N. Wright, J. R. Knibloe, R. V. Raman, and S. V. Rale, “Reaction processing of iron aluminides”, Materials Science and Engineering, A153, pp.706-711 (1992)。
    49. D. Q. Yi, C. H. Li, J. H. Wang, R. Warren, and I. Olefjord, ”Preparation of Fe3Al based iron aluminides from elemental and prealloyed powders”, Mate. Sci. and Tech., 11, pp.600-655 (1995)。
    50. F. Aldinger and G. Petzow, “Preparation of hollow particles and extremely light sintered materials”, Powder Metall. Int. 6 2, pp.84-87 (1974)。
    51. F. Aldinger, “Controlled porosity by an extreme Kirkendall effect”, Acta Metall. 22, pp.923-928 (1974)。
    52. D. L. Joslin, D. S. Easton, C. T. Liu, S. S. Babu and S. A. David, “Processing of Fe3Al and FeAl alloys by reaction synthesis”, Intermetallics, 3, pp.467-481(1995).
    53. D. L. Joslin, D. S. Easton, C. T. Liu, and S. A. David, “Reaction synthesis of Fe-Al alloys”, J. Mater. Sci. and Engr. A ,192/193, pp.544-548(1995)。
    54. S. Gedevanishvili, and S. C. Deevi, “Processing of iron aluminides by pressureless sintering through Fe+Al elemental route”, Mate. Sci. and Engr. A, 325, 163-176(2002)。
    55. E. C. Deane and R. F. Cochrane in Processing, Properties, and Applications of Iron Aluminides, edited by J. H. Schneibel and M. A. Crimp, pp.59-67。
    56. M. N. Srinivasan and V. K. Sikka in Processing, Properties, and Applications of Iron Aluminides, edited by J. H. Schneibel and M. A. Crimp, pp.87-98。
    57. L. He and E. Ma, “Full-density nanocrystalline Fe-29Al-2Cr intermetallic consolidated from mechanically milled powders”, J. Mater. Res.11, pp.72-80 (1996)。
    58. J.R. Knibloe, R.N. Wright, and C.L. Trybus, “Microstructure and mechanical properties of Fe3Al alloys with chromium”, J. Mater. Sci., 28, pp.2040-2048 (1993)。
    59. N. K. Xydas, B. L. Gabbitas, X. X. Xuand and L. A. Salam,”Transient liquid phase sintering of high density Fe3Al using Fe and Fe2Al5/FeAl2 powders Part1: Experimentation and results”, Powder Metall., 46 1, pp.68-72 (2003)。
    60. P. Tomaszewicz and G.R. Wallwork, “Iron-Aluminum Alloys: A Review of their oxidation behaviour”, Rev. High. Temp.Mater. 4, pp.75-105(1978)。
    61. P. Tomaszewicz and G.R. Wallwork, “Observations of nodule growth during the oxidation of pure binary iron-aluminum alloys”, Oxid .Metall.19, pp.165-185(1983)。
    62. J. H. Devan, in Oxidation of High-Temperature Intermetallics, edited by T. Grobstein and J. Doychak, pp.107-111 (1989)。
    63. J. P. Larpin, M. Lambertin, and J.C. Colson, in Materials and Coating to Resist High Temperature Corrosion, pp.12 (1985)。
    64. K.N. Strafford and R. Manifold, “Effects of aluminum alloying additions on the sulfidation behavior of iron”, Oxid.Metall.5, pp.85-112(1972)。
    65. P.J. Smith, P.R.S. Jackson and W.W. Smeltzer,Fundametal Aspects of High Temperature CorrosionⅡ, Proceedings Volume86-9, pp.19。
    66. P. C. Patanik and W. W. Smeltzer, “Sulfidation properties of Fe-Al alloys at 1173 K in H2S-H2 atmospheres”, Oxid. Metall.23, pp.53-75(1985)。
    67. P. C. Patanik and W. W. Smeltzer, “Sulfidation properties of Fe-Al alloys (6-28 a/o Al) at 1173 K in sulfur vapor at PS2 equals 1. 45 multiplied by 10-3 Pa”, J. Electrochem. Soc.132, pp.1226-1232(1985)。
    68. P. J. Smith and W. W. Smeltzer.Oxid. Metall.28, pp.291-295(1987)。
    69. W. W. Smeltzer and P. C. Patnail, J. Electrochem. Soc.132, pp.1233-1238(1985)。
    70. W. H. Lee and R. Y. Lin, in Proceeding of the Fourth Annual Conference on Fossil Engergy Materials, ORNL/FMP-90/1.(U.S.Department of Energy, Oak Ridge, TN, August), pp.475-479(1990)。
    71. R. A. Buchanan and J. G. Kim, in Fossil Engergy Materials Advanced Research and Technology Development Materials Program Semi-annual Progress Report for Period Ending March 31. 1989, ORNL/FMP-89/1(U.S.Department of Energy, Oak Ridge, TN, July), pp.553-558(1989)。
    72. K. Suganuma, “Properties of Fe3Al matrix composites with Al2O3 particle dispersions”, J. Alloys and Comp., 197, pp.29-34 (1993)。
    73. R. Subramanian, C. G. McKamey, “Iron aluminide - Al2O3 composites by in situ displacement reactions: processing and mechanical properties”, Mater. Sci. and Engr., A253, pp.119-128 (1998)。
    74. K. Sun and A. Li, “Sintering technology research of Fe3Al/Al2O3 ceramic composites”, J. Mater. Proc. Tech., pp.482-485 (2001)。
    75. S. K. Mukherjee, and S. Bandyopadhyay, “Mechanical and interfacial characterization of Fe3Al and Fe3Al-Al2O3 intermetallic composite made by mechanical smearing and hot isostatic pressing”, Composites B, 28B, pp.45-48 (1997)。
    76. R. Subramanian, C. G. McKamey, “Synthesis of iron aluminide-Al2O3 composites by in-situ displacement reactions”, Mater. Sci. and Engr., A239-240, pp.640-646 (1997)。
    77. S. K. Mukherjee, and S. Bandyopadhyay, “A novel way to make Fe3Al/Al2O3 composite”, Mater. Sci. and Engr., A202, pp.123-127 (1995)。
    78. U. Burkhardt, Yu. Grin, and M. Ellner, Acta Cryst.B50, pp.313–316 (1994)。
    79. D. K. Mukhopadhyay, C. Suryanarayana, and F.H. Froes, “Synthesis of nanocrystalline Al5Fe2 by mechanical alloying”, Scr. Metal., 31 3, pp.333–338 (1994)。
    80. R. L. Hultgren, Selected Values of the Thermodynamic Properties of Binary Alloys, American Society for Metals, Materials Park, OH, (1973)。
    81. O. Kubachewski and C. B. Metallurgical Thermochemistry, 5th Edition. Pergamon Press, New York, NY, (1979)。
    82. R. W. Richards, R. D. Jones, P. D. Clements, H. Clarke, “Metallurgy of continuous hot dip aluminising”, Int. Mat. Rev., 22, pp.139 -142(1925)。
    83. I. D. Maruin, Rev. Metall., 22, pp.89-90(1930)。
    84. M. Agiew and O. L. Viwr, J. Inst. Met., 44, pp.89-92(1930)。
    85. E. Gebhardt, W. Obrowski, and Z. Metallkd., 44, pp.154-160(1953)。
    86. V. N. Yermenko, yar. Natantion, V. I. Dybkov, “The effect of dissolution on the growth of the Fe2Al5 interlayer in the solid iron-liquid aluminum system”, J. Mater. Sci., 16(9), pp.1748-1756 (1981)。
    87. G. Eggeler, W. Auer, and H. Kaeshe, “On the influence of silicon on the growth of the alloy layer during hot dip aluminizing”, J. Mater. Sci., 21(9), pp.3348 -3352(1986)。
    88. A. Bahadur and O. N. Mohnty, “Structural studies of hot dip aluminized coating on mild steel”, Mater. Trans., 32(11), pp.1053 -1061(1991)。
    89. A. Bahadur and O. N. Mohanty, “Aluminum diffusion coating on medium carbon steel”, Mater. Trans., 36(9), pp.1170 -1176(1995)。
    90. K. Bouche, F. Barbier, and A. Coulet, “Intermetallic compound layer growth between solid iron and molten aluminum”, Mater. Sci. Eng. A, 249, pp.167-175 (1998).
    91. H. R. Shahverdi, M. R. Ghomashchi, S. Shabestari, and J. Hejazi, “Kinetics of interfacial reaction between solid iron and molten aluminium”, J. Mater. Sci, 37, pp.1061-1066(2002)。
    92. K. Schubert, U. Rossler, M. Kluge, K. Anderko, and L. Harle, Naturwissenschaften, 43, pp.7 -12(1956)。
    93. K. Schubert, U. Rossler, M. Kluge, K. Anderko, and L. Harle, Naturwissenschaften, 40, pp.437 -442(1953)。
    94. T. Heumann and S. Dittrich, Z. Metallkd., 50, pp.617 -623(1959)。
    95. K. A. Philpot, Z. A. Munir, and J.B.Holt, “An investigation of the synthesis of nickel aluminides through gasless combustion”, J. Mat. Sci, 22, pp.159–169 (1987)。
    96. C. Nishimura and C. T. Liu, “Reactive sintering of Ni3Al under compression”, Acta Metall., 41, pp.113–120 (1993)。
    97. K. Vedula and J.R.Stephens, Metal Powder Report, 42, pp.84-89 (1987)。
    98. 康慧貞 碩士論文 〝鐵鋁介金屬化合物及其複合材研究〞,清華大學 (1998)。
    99. B. E. Warren, “X-Ray Diffraction”, (A ddison- Wesley), chapter 5(1993)。
    100. L. V. Azaroff, “Elements of X-Ray Crystallography”, (McGraw-Hill), chapter 17(1995)。
    101. S. L. Draper, D. J. Gaydosh, M.V. Nathal, “Compatibility of Fe-40Al with various fibers”, J. Mater. Res. 5(9), pp.1976-1984(1990)。
    102. K. Misra, “Identification of thermodynamically stable ceramic reinforcement materials for iron aluminide matrices”, Metall. Trans. A, 21(2), pp.441-446(1990)。
    103. C. G. McKamey, J. A. Horton, and C. T. Liu, in: N. S. Stoloff, C. C. Koch, C. T. Liu, and O. Izumi (Eds.), “Effect of aluminum addition on ductility and yield strength of Fe3Al alloys with 0.5 wt.%TiB2”, High Temperature Ordered Intermetallic Alloys Ⅱ, MRS Proc. Vol. 81, MRS, Pittsburgh, PA, pp.321-327(1987)。
    104. J. H. Schneibel, P.Grahle, and J.Rosler, “Mechanical alloying of FeAl with Y2O3”, Mater. Sci. Eng. A153, pp.684-690(1992)。
    105. R. Subramanian and J. H. Schneibel, “Processing iron-aluminide composites containing carbides or borides”, JOM, 49, pp.50-54(1997)。
    106. J. H. Schneibel and S. C. Deevi, “Processing and mechanical properties of iron aluminide composites containing oxide particles”, Mater. Sci. and Engr., A364, pp.166-170(2004)。
    107. Masahiro Inoue, Katsuaki Suganuma, and Koichi Nichara, “Mechanical properties of aluminide matrix composites fabricated by reactive hot-pressing in several environments”, Intermetallics, 8, pp.1035-1042(2000)。
    108. H. Z. Kang, S. Lee, and C. T. Hu, “The Role of Pre-formed Fe2Al5 in P/M Processing of Fe3Al”, Mater. Sci. and Engr. A 398, pp.360-366(2005)。
    109. R. E. Reed-Hill and R. Abbaschian: Physical Metallurgy Principles, 3rd ed., PWS-KENT Co., Boston, MA, pp.739-746(1992)。
    110. T. F. Klimowicz and K. S. Vecchio: in Fundamental Relationships between Microstructure an Mechanical Properties of Metal-Matrix Composites, P. K. Liaw and M. N. Gungor, eds., TMS, Warrendale, PA, pp.255-267(1990)。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE