簡易檢索 / 詳目顯示

研究生: 楊瑞銘
論文名稱: 矽基板高功率之氮化鎵高電子遷移率電晶體與蕭特基二極體設計與製作
Design and Fabrication of High Power GaN-Based HEMTs and Schottky Barrier Diodes on Silicon Substrates
指導教授: 徐碩鴻
口試委員: 林意茵
徐永珍
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 63
中文關鍵詞: 氮化鎵高電子遷移率電晶體蕭特基二極體
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化鎵的寬能隙、高臨界電壓以及高電子飽和速度的材料特性使之在功率元件的應用上相較於矽材料有相當大的優勢,而在近幾年來,建立於矽基板上之氮化鋁鎵/氮化鎵高電子遷移率電晶體與蕭特基二極體已被廣泛研究與討論,其中,因緩衝層的品質好壞而造成的漏電流更為此領域的重要議題之一。然而,對於功率元件的應用而言,過大的漏電流容易造成能源的浪費且將會嚴重降低系統運轉的效率。這之間已有研究指出元件的歐姆接觸製程除了降低接觸電阻值以減少功率消耗外,還要同時考慮歐姆合金尖端鑽入所造成的緩衝層漏電流。故本論文研究著重在使用不同的歐姆接觸金屬堆疊與不同的快速熱退火的溫度來實現歐姆接觸的最佳化,並同時觀察對緩衝層漏電流的影響。此外,我們將此最佳化後歐姆接觸的金屬堆疊實施在高電子遷移率電晶體與蕭特基二極體上,並觀察其對元件影響。在高電子遷移率電晶體的設計上,不同形狀的元件結構被採用來觀察不同的歐姆接觸金屬堆疊對崩潰耐壓的影響,而這些形狀則為指叉狀、矩形結構和大尺寸元件。在蕭特基二極體元件研究上,我們利用矽擴散進蕭基特與歐姆電極下的氮化鋁鎵/氮化鎵中,成功達到將開啟電壓從1.4 V 降低至1.27 V 與接觸電阻並且同時解決歐姆合金尖端鑽入的問題,並同時改善其崩潰電壓。


    Gallium Nitride has generated significant interests for high-voltage applications due to its superior material properties such as wide bandgap, high critical electric field, high electron saturation velocity, and good thermal stability. These properties offer several potential advantages over silicon-based devices. High performance AlGaN/GaN high-electron mobility transistors (HEMTs) and Schottky Barrier Diodes (SBDs) have been realized on the silicon substrate for high-power applications in recent years, while one issue remains for these devices is the relatively high leakage current due to the quality of the buffer layer. Such a large leakage current causes serious off-state loss in the power supply and reduces the efficiency of the system. Optimization of the ohmic contacts requires not only to lowering the contact resistance to reduce power loss, but also needs to consider the buffer leakage due to ohmic metal spikes. This thesis focuses on the optimization of ohmic contacts of GaN HEMTs by using different metal stacks and rapid thermal annealing temperatures, while monitoring the buffer leakage at the same time. In addition, the impacts of using different ohmic contact alloys on HEMTs and SBDs are also analyzed. In the study of HEMTs, several layouts including one-finger, square-gate devices, and large scale devices also are used to investigate the impacts of alloyed ohmic contact on breakdown voltage such as off-state leakage. It is also observed that the turn-on voltage of the Si-diffused devices is shifted from 1.4 V to 1.27 V by diffusing silicon atoms into AlGaN/GaN layer underneath the Schottky electrode. The proposed Si-diffused ohmic contact can achieve both low contact resistance and smooth surface morphology, because the silicon atoms underneath ohmic electrode can prevent metal spikes originating from alloyed ohmic contact and improve breakdown voltage

    摘要 i ABSTRACT ii ACKNOWLEDGEMENT iii TABLE OF CONTENTS iv LIST OF FIGURES vi LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Motivation 1 1.1.1 Wide bandgap materials 2 1.1.2 Saturation electron velocity 3 1.1.3 Breakdown voltage versus on - resistance 4 1.2 Thesis Organization 5 Chapter 2 Ohmic Contacts and Measurement Methods 6 2.1 Layer Structures 6 2.2 Optimization of Ohmic Contacts 7 2.3 Conventional and Stacking-Pad Structures 8 2.4 Transfer Length Method (TLM) 10 2.5 Buffer Leakage Measurement 12 2.6 Results and Discussions 13 2.6.1 Optimization of ohmic contacts with different metal stacks 13 2.6.2 I - V characteristics 16 2.6.3 Breakdown characteristics 19 Chapter 3 AlGaN/GaN High Electron Mobility Transistors 22 3.1 AlGaN/GaN HEMTs 22 3.2 Device Design 23 3.3 Process Flow 25 3.3.1 Mesa isolation 27 3.3.2 Ohmic contact 28 3.3.3 Schottky contact 29 3.3.4 Passivation 29 3.3.5 Pad metal 30 3.4 Results and Discussions 32 3.4.1 I - V characteristics 32 3.4.2 Off-state characteristics 38 Chapter 4 AlGaN/GaN Schottky Barrier Diodes 41 4.1 AlGaN/GaN SBDs 41 4.2 Device Design 42 4.3 Process Flow 42 4.3.1 Mesa isolation 46 4.3.2 Silicon diffusion 46 4.3.3 Ohmic contact 46 4.3.4 Schottky contact 46 4.3.5 Passivation 46 4.4 Results and Discussions 47 4.4.1 Si-diffused Ohmic 47 4.4.2 I - V characteristics 50 4.4.3 Off-state characteristics 55 Chapter 5 Conclusion and Future Work 59 References 60

    [1] O. Ambacher, “Growth and applications of group III-nitrides,” Journal of Physics D (Applied Physics), vol. 31, pp. 2653-2710, 1998.
    [2] B. J. Baliga, “Power Semiconductors Devices,” Boston: PWS, pp. 28-29, 1996.
    [3] M. Willander et al., “Silicon carbide and diamond for high temperature devices applications,” Journal of materials science: materials in electronics, pp. 1-25, 2006.
    [4] B. Gelmont et al., “Monte Carlo Simulation of Electron Transport in Gallium Nitride,” J. Appl. Phys., vol. 74, no. 3, pp. 1818-1821, 1993.
    [5] A. N. Bright et al., “Correlation of contact resistance with microstructure for Au/Ni/Al/Ti/AlGaN/GaN ohmic contacts using transmission electron microscopy,” J. Appl. Phys., vol. 89, no. 6, pp. 3144-3150, 2001.
    [6] D. Buttari et al., “Systematic Characterization of Cl2 Reactive Ion Etching for Improved Ohmics in AlGaN/GaN HEMTs,” IEEE Electron Device Letters, vol. 23, no. 2, pp. 623-623, Feb. 2002.
    [7] J. W. Chung et al., “AlGaN/GaN HEMT with 300-GHz fmax,” IEEE Electron Device Letters, vol. 31, no. 3, pp. 195-197, Mar. 2010.
    [8] H. S. Lee et al., “AlGaN/GaN High-Electron-Mobility Transistors Fabricated Through a Au-Free Technology,” IEEE Electron Device Letters, vol. 32, no. 5, pp. 623-623, May 2011.
    [9] Burm, J., et al., “Ultra-low resistive ohmic contacts on n-GaN using Si implantation,” Appl. Phys. Lett., pp. 464-466, 1997.
    [10] Lin, C.F. et al., “Improved contact performance of GaN film using Si diffusion,” Appl. Phys. Lett., vol. 76, no. 14, pp. 1878-1880, 2000.
    [11] V. Desmaris et al., “Low-Resistance Si/Ti/Al/Ni/Au Multilayer Ohmic Contact to Undoped AlGaN/GaN Heterostructures,” Electrochemical and Solid-State Letters, vol. 7, no. 4, pp. G72-G74, 2004.
    [12] D. F. Wang et al., “Low-resistance Ti/Al/Ti/Au multilayer ohmic contact to n-GaN,” J.Appl. Phys., vol. 89, no. 11, pp. 6214-6217, 2001.
    [13] M. Hiroki et al., “Al/Ti/Al Ohmic Contact to AlGaN/GaN Heterostructure,” IEICE Technical Report ED, Nov. 2008.
    [14] Y. Dora et al., “Effect of Ohmic Contacts on Buffer Leakage of GaN Transistors,” IEEE Electron Device Lett., vol. 27, no. 7, pp. 529-531, 2006.
    [15] S. J. Pearton et al., “A review of dry etching of GaN and related materials,” MRS Internet J. Nitride Semicond. Res., vol. 5, no. 11, pp. 1-38, Nov. 2000.
    [16] Z.-Q. Fang et al., “Plasma-etching-enhanced deep centers in n-GaN grown by metal organic chemical-vapor deposition,” Appl. Phys. Lett., vol. 82, no. 10, pp. 1562-1564, Mar. 2003.
    [17] M. W. Ha et al., “High-voltage GaN SBD on Si substrate by suppressing metal spikes,” International Symposium on Power Semiconductors Devices &IC’s, pp. 231-234, May 2011.
    [18] R. Gong et al., “Analysis on the new mechanisms of low resistance stacked Ti/Al Ohmic contact structure on AlGaN/GaN HEMTs,” J.Phys. D: Appl. Phys., vol. 43, no. 39, pp. 1562-1564, 2010.
    [19] O. Ambacher et al., “Two-dimension electron gases induced byspontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Journal of Applied Physics, vol. 85, no. 6, pp. 3222-3233, 1999.
    [20] N. Q. Zhang et al., “High breakdown GaN HEMT with overlapping gate structure,” IEEE Electron Device Lett., vol. 21, no. 9, pp. 421-423, Sep. 2000.
    [21] H. Xing et al., “High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field plates,” IEEE Electron Device Lett., vol. 25, no. 4, pp. 161-163, Apr. 2004.
    [22] Y. Dora et al., “High breakdown voltage achieved on AlGaN-GaN HEMTs with integrated slant field plates,” IEEE Electron Device Lett., vol. 27, no. 9, pp. 713-715, Sep. 2006.
    [23] Y. C. Cho et al., “The effect of an Fe-doped GaN buffer on OFF-state reakdown characteristics in AlGaN/GaN HEMTs on Si substrate,” IEEE Electron Device Lett., vol. 53, no. 12, pp. 2926-2928, Dec. 2006.
    [24] I. B. Rowena et al., “Buffer thickness contribution to suppress vertical leakage current with high breakdown field (2.3 MV/cm) for GaN on Si,” IEEE Electron Device Lett., vol. 32, no. 11, pp. 1534-1536, Nov. 2011.
    [25] P. Srivastava et al., “Record breakdown voltage (2200 V) of GaN DHFETs on Si with 2-μm buffer thickness by local substrate removal,” IEEE Electron Device Lett., vol. 32, no. 1, pp. 30-32, Jan. 2011.
    [26] Y. W. Lian et al., “AlGaN/GaN HEMTs on silicon with hybrid schottky-ohmic drain for high breakdown voltage and low leakage current,” IEEE Electron Device Lett., vol. 33, no. 7, pp. 973-975, Jul. 2012.
    [27] X. Hu et al., “Enhancement mode AlGaN/GaN HFET with selectively grown pn junction gate,” IEEE Electron Lett., vol. 36, no. 8, pp. 753-754, Apr. 2000.
    [28] Y. Cai et al., “High-Performance Enhancement-Mode AlGaN/GaN HEMTs Using Fluoride-Based Plasma Treatment,” IEEE Electron Device Lett., vol. 26, no. 7, pp. 435-437, Jul. 2005.
    [29] W. B. Lanford et al., “Recessed-gate enhancement-mode GaN HEMT with high threshold voltage,” IEEE Electron Lett., vol. 41, no. 7, pp. 449-450, Mar. 2005.
    [30] T. Oka et al., “AlGaN/GaN recessed MIS-gate HFET with high threshold voltage normally-off operation for power electronics applications,” IEEE Electron Lett., vol. 29, no. 7, pp. 449–450, Jul. 2008.
    [31] B. Boudart et al., “Raman characterization of Mg+ion-implanted GaN,” J. Phys., Condens. Matter, vol. 16, no. 2, pp. s49-s55, Jan. 2004.
    [32] T. Oishi et al., “Highly resistive GaN layers formed by ion implantation of Zn along the c-axis,” J. Appl. Phys., vol. 94, no. 3, pp. 1662-1666, Aug. 2003.
    [33] J. Y. Shiu et al., “Oxygen Ion Implantation Isolation Planar Process for AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 28, no. 6, pp. 476-478, Jun. 2007.
    [34] S. R. Bahl et al., “Mesa-sidewall gate leakage in InAlAs/InGaAs heterostructure field effect transistors,” IEEE Trans. Electron Devices, vol. 39, no. 9, pp. 2037-2043, Sep. 1992.
    [35] G. Koleyet al., “Slow Transients Observed in AlGaN/GaN HFETs: Effects of SiNx Passivation and UV Illumination,” IEEE Trans. Electron Devices, vol. 50, no. 4, pp. 886-893, Apr. 2003.
    [36] B. M. Green et al., “The Effect of Surface Passivation on the Microwave Characteristics of Undoped AlGaN/GaN HEMT’s,” IEEE Electron Device Lett., vol. 21, no. 6, pp. 268-270, Jun. 2000.
    [37] S. Yoshida et al., “A new GaN based field effect schottky barrier diode with a very low on-voltage operation,” Proceeding of ISPSD, pp. 323-326, 2004.
    [38] Ikeda et al., “A novel GaN device with thin AlGaN/GaN heterostructure for high-power applications,” Furukawa Rev., no. 29, pp. 1-6, 2006.
    [39] K. Takatani et al., “AlGaN/GaN Schottky-ohmic combined anode field effect diode with fluoride-based plasma treatment,” IEEE Electronics Letters, vol. 44, no. 4, 2008.
    [40] T. Murata et al., “Reduction of ohmic contact resistance of AlGaN/GaN HFETs by doping of thermally diffused Si,” IMFEDK., pp. 47-48, 2004.
    [41] S, Jang et al., “Si-diffused GaN for enhancement-mode GaN mosfet on si applications,” Journal of Electronic Materials, vol. 35, no. 4, pp. 685-690, 2006.
    [42] H. Lu et al., “Low leakage schottky rectifiers fabricated on homoepitaxial GaN,” Appl. Phys. Lett., vol. 91, no. 17, pp. 172113-172113-3, Dec. 2007.
    [43] L. Wang et al., “High barrier height GaN schottky diodes: Pt/GaN and Pd/GaN,” Appl. Phys. Lett., vol. 68, no. 9, pp. 1267-1269, Dec. 1996.
    [44] A. P. Zhang et al., “Comparison of GaN P-I-N and schottky rectifier performance,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 407-411, Mar. 2004.
    [45] J. Schoen et al., “Design considerations and experimental analysis of high-voltage SiC schottky barrier rectifiers,” IEEE Trans. Electron Devices, vol. 45, no. 7, pp. 1595-1603, Jul. 1998.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE