研究生: |
高庭國 Gao, Ting-Guo |
---|---|
論文名稱: |
適用於數位無線麥克風之錯誤更正編解碼實作 Implementation of Error Control Coding for Digital Wireless Microphones |
指導教授: |
翁詠祿
Ueng, Yeong-Luh |
口試委員: |
王忠炫
Wang, Chung-Hsuan 李晃昌 Lee, Huang-Chang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 錯誤更正碼 、BCH碼 、C語言 、嵌入式系統 、無線麥克風 |
外文關鍵詞: | Error Control Coding, BCH Code, C Language, Embedded System, Wireless Microphone |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於數位無線麥克風來說,穩定且可靠的通道傳輸非常重要,所以會使用錯誤更正碼(Error Control Coding,ECC)來保護資料以避免被糟糕的通道品質所影響。但是數位無線麥克風通常為嵌入式系統,應使用複雜度較低的錯誤更正碼來確保整體系統的低延遲性以及較少的系統資源使用。Bose-Chaudhuri-Hocquenghem code(BCH碼)的低複雜度和高可靠度的特性,適合用於數位無線麥克風。在這論文中,我們將會實作BCH碼,該BCH碼使用線性反饋移位暫存器(Linear Feedback Shift Register,LFSR)當作編碼器;並使用Peterson演算法搭配秦式搜尋(Chein Search)當作解碼器。另外,我們透過使用查表法減少計算徵狀值(Syndrome)的延遲時間;以及使用變數變換來省略秦式搜尋。除此之外,我們實作交錯放置器(Interleaver)以抵抗叢發錯誤(Burst Error),並更換重要資料位元的位置好讓其有更好的ECC保護。為了進行實驗,我們實作C語言版本的錯誤更正碼,並針對ARM的微處理器進行程式優化。我們使用了數位無線麥克風雛型系統來做當作實驗平台,並將錯誤更正碼程式燒錄至該平台的ARM微處理器以評估效能。實驗結果中,使用錯誤更正碼將平均增加0.35 ms的系統延遲時間,並將提升麥克風的有效傳輸距離約47%。
For digital wireless microphone, reliable channel communication is essential, so it uses error control coding (ECC) to protect data from bad channel quality. But digital wireless microphone is usually a embedded system, the complexity of ECC should be low to make sure low latency and low resource consumed. Bose-Chaudhuri-Hocquenghem code (BCH code) has low complexity and high reliability; it is suitable for digital wireless microphone. In this thesis, we will implement BCH code, and use Linear Feedback Shift Register (LFSR) as encoder; Peterson's algorithm and Chein search as decoder. Besides, we reduce the latency in syndrome computation by using look-up table, and omit Chein search by using variable transformation. In addition, we implement the interleaver to alleviate burst error, and change the location of important bits of data for stronger ECC protection. For experiment, we implement the ECC in C language and program is optimized for ARM microcontroller. In experiment, we use a prototype of digital wireless microphone system as platform; then load our ECC program to the ARM microcontroller in the system to evaluate the performance. In result, the latency of ECC is 0.35 ms in average and the transmission distence of microphone increases 47%.
[1] H. Liu, D. McLachlan, and D. Wang, "Overview of wireless microphones - part i: System and technologies," IEEE Transactions on Broadcasting, vol. 61, no. 3, pp. 494-504, Sept 2015.
[2] H. Robjohns, "A brief history of microphones," Microphone Data Book, 2001.
[3] P. Cummiskey, N. Jayant, and J. Flanagan, "Adaptive quantization in differential pcm coding of speech," The Bell System Technical Journal, vol. 52, no. 7, pp. 1105-1118, Sept 1973.
[4] M. Kiesler and A. George, "Secret communication system," US Patents, 1941.
[5] H. Liu, D. McLachlan, and D. Wang, "Overview of wireless microphones - part ii: Frequency bands, interference, and regulation," IEEE Transactions on Broadcasting, vol. 61, no. 3, pp. 505-519, Sept 2015.
[6] Y. Wu, H. Wang, and P. Zhang, "Protection of wireless microphones in ieee 802.22 cognitive radio networks," IEEE International Conference on Communications Workshops, 2009.
[7] R. Kato and J. Katto, "Development of software-dened acoustic communication platform and its evaluations," IEEE Wireless Communications and Networking Conference (WCNC), 2015.
[8] J. Simpson, W. Cox, J. Krier, B. Cochenour, B. Hughes, and J. Muth, "Development of software-dened acoustic communication platform and its evaluations," OCEANS 2010 MTS/IEEE SEATTLE, 2010.
[9] ETSI, "Electromagnetic compatibility and radio spectrum matters; technical characteristics for professional wireless microphone systems," 2007.
[10] Sony, "An introduction to digital wireless microphone technology," Tokyo, Japan, 2007.
[11] D. Rochman, "An overview of digital wireless microphone systems," SHURE, Jan 2015.
[12] A. Hocquenghem, "Codes correcteurs d'erreurs," Chires, vol. 2, pp. 147-156, 1959.
[13] R. Bose and D. Ray-Chaudhuri, "On a class of error correcting binary group codes," Information Control, vol. 3, pp. 68-79, March 1960.
[14] W. Peterson, "Encoding and error-correction procedures for the bose-chaudhuri codes," IRE Transactions on Information Theory, vol. 6, no. 4, Sept 1960.
[15] Z. Kashani and M. Shiva, "Bch coding and multi-hop communication in wireless sensor networks," IFIP International Conference on Wireless and Optical Communications Networks, 2006.
[16] H. Teng, Z. Wu, X. Yang, and G. Burd, "Hardware ecient decoding system for bose, ray-chaudhuri, hocquenghem (bch) product codes," US Patents, 2007.
[17] Y. Lee, H. Yoo, I. Yoo, and I. Park, "High-throughput and low-complexity bch decoding architecture for solid-state drives," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 5, pp. 1183-1187, May 2014.
[18] B. Vahdat, V. khorasani, and M. Mortazavi, "Hardware implementation of a 32-bit fault tolerant alu design using (63,57) bch code," IAA conference, Jan 2011.
[19] R. Chien, "Cyclic decoding procedures for bose-chaudhuri-hocquenghem codes," IEEE Transactions on Information Theory, vol. 10, no. 4, Oct 1964.
[20] X. Zhang and Z. Wang, "A low-complexity three-error-correcting bch decoder for optical transport network," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59, no. 10, pp. 663-667, Oct 2012.