研究生: |
蘇晨豪 |
---|---|
論文名稱: |
即時動作及生理負荷評估系統建立 |
指導教授: | 王茂駿 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 動作擷取 、生理感測 、即時人因評估 、智慧型工廠 |
外文關鍵詞: | motion capture, physiological sensing, real-time ergonomics evaluation, smart factory |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了解決現今製造系統所需之彈性及整合性,智慧型工廠(Smart Factory)的概念被提出,強調即時生產資訊的取得性。本研究提出一個新的研究架構,將作業人員納入智慧型工廠概念中。藉由即時掌握人員的身心狀態,進而提升人員安全性、舒適度及生產力,增加智慧型工廠的完備性。
本研究在智慧型工廠原型SENSE (Sensible Ergonomics Networks in Smart Environment)架構下,藉由開發即時性的動作及生理負荷感測模組,發展即時人因評估視覺化工具。SENSE方法使用無線慣性動作感測器及無線生理感測裝置來取得人員的作業動作及心電訊號,並將此資料即時回傳至電腦平台進行運算。接著以人因評估方法,如RULA、OWAS、生物力學及工作負荷等級來分析作業人員的姿勢及生理負荷,並即時視覺化的方式呈現。此外,本研究亦發展適合作業現場管理人員的行動監控模組,將以上人因指標資訊由無線網路從伺服器端傳至手機中,讓現場管理人員能夠即時的獲得人員姿勢及負荷狀態等資訊。
本研究以汽車廠的車門組裝作業為例進行評估,讓使用者穿戴即時動作及生理負荷評估系統進行組裝動作。此系統可即時顯示人體動作及人因評估指標,讓現場人員可對作業時的有危害性姿勢進行改善,以建立安全舒適之作業場所。
To meet the requirement of flexibility and integration in modern manufacturing system, the concept of Smart Factory was proposed to emphasize the accessibility of real-time production information. This research proposes a new framework, containing human issues into the Smart Factory. By knowing the state of operators, the safety, comfort, and productivity will be increased, and the completeness of Smart Factory will be enhanced.
This study implements a prototype under the framework of Smart Factory named SENSE—Sensible Ergonomics Network in Smart Environment. Under this framework, the real-time motion capture and physiological sensing modules are built, and the ergonomics visualization tools are developed. The wireless inertial and physiological sensors are used to collect the motion and ECG data, which will be sent back to a computer for real-time data processing. By using ergonomics evaluation methods, such as RULA, OWAS, biomechanics, and the classification of physical work, this information is used to analyze the posture and physical workload of an operator, and can be visualized in real-time. In addition, this study also develops the mobile supervisory module for managers on shop floor in order to transfer the ergonomics information from a server to a mobile device through wireless networks, so that managers are able to get the real-time information of operators, such as posture and workload.
This study uses the example of the vehicle door assembly tasks to evaluate the system. By asking the subjects wear the real-time ergonomics evaluation system to the assembly tasks. The system displays the human motion and ergonomics index in real-time. Managers can enhance the safety and health of workplace by improving the hazardous posture.
1. Vicon網站。www.vicon.com/
2. Qualysis網站。www.qualisys.com/
3. Visual Components網站。www.visualcomponents.com/
4. MTx網站。www.xsens.com/
5. NeXus-10網站。www.mindmedia.nl/
6. JackTM網站。
http://www.ugs.com/products/tecnomatix/human_performance/jack/digital_humans.shtml
7. SafeworkTM網站。http://www.safework.com/
8. 應宜雄、盧士一、陳志勇、李正隆,1999。生物力學法人工抬舉姿勢評估圖之製作。行政院勞工委員會勞工安全衛生研究,勞工安全衛生研究季刊,7(4),443-458。
9. American Industrial Hygiene Association (AIHA), 1971. Ergonomic guide to assessment of metabolic and cardiac costs of physical work. Akron, OH: AIHA.
10. Bauer, M., Jendoubi, L., and Siemoneit, O., 2004. Smart Factory-Mobile Computing in Production Environments. Workshop on Applications of Mobile Embedded Systems, Boston, MA.
11. Beevis, D., 2003. Ergonomics—Costs and Benefits Revisited. Applied Ergonomics, 34(5), 491-496.
12. Bernmark, E., and Wiktorin, C., 2002. A triaxial accelerometer for measuring arm movements. Applied Ergonomics, 33(6), 541–547.
13. Bidanda, B., Ariyawongrat, P., Needy, K., Norman, B., and Tharmmaphornphilas, W., 2005. Human related issues in manufacturing cell design, implementation, and operation: a review and survey. Computers & Industrial Engineering, 48(3), 507-523.
14. Bink, B., 1962. Physical Work Capacity in Relation to Working Time and Age. Ergonomics, 5(1), 25-28.
15. Chaffin, D.B., 1969. A computerized biomechanical model: Development and use in studying gross body action. Journal of Biomechanics, 2, 429-441.
16. Chaffin, D.B., Andersson, B.J., and Martin, B.J., 1999. Occupational Biomechanics-Third edition. John Wiley & Sons, Inc.
17. Corlett, E.N., and Manenica, I., 1980. The effects and measurement of working postures. Applied Ergonomics, 11(1). 7-16.
18. David, G.C., 2005. Ergonomic methods for assessing exposure to risk factors for work-related musculoskeletal disorders. Occupational Medicine, 55(3), 190–199.
19. Dempster, W.T., 1955. Space requirements of the seated operator, WADC-TR-55-159, Aerospace Medical Research Laboratories, Dayton, Ohio.
20. DeVaul, R.W., Sung, M., Gips, J., and Pentland, S., 2003. MIThril 2003: Applications and Architecture. Proceedings of the 7th IEEE International Symposium on Wearable Computers.
21. Foursa, M., and Narayanan, R., 2008. Innovative Control System for Industrial Environment. Fourth International Conference on Autonomic and Autonomous Systems, 82-87.
22. Frasson-Hall C, Gloria R, Kilbom A, Winkel J, Karlqvist L, and Wiktorin C., 1995. A portable ergonomic observation method (PEO) for computerised on line recording of postures and manual handling. Applied Ergonomics, 26(2), 93–100.
23. Gemperle, F., Kasabach, C., Stivoric, J., Bauer, M., and Martin, R., 1998. Design for wearability. Second International Symposium on Wearable Computers.
24. Gopalsamy, C., Park, S., Rajamanickam, R., and Jayaraman, S., 1999. The Wearable MotherboardTM: The first generation of adaptive and responsive textile structures (ARTS) for medical applications, Virtual Reality, 152-168.
25. Gorlich, D., Stephan, P., and Quadflieg, J., 2007. Demonstrating remote operation of industrial devices using mobile phones. International Conference On Mobile Technology, Applications, And Systems, Singapore, 474-477.
26. Guerra-Filho, G., 2005. Optical motion capture: theory and implementation, Journal of Theoretical and Applied Informatics, 12(2), 61–89.
27. Hanson, M., H. Powell Jr., Barth, A.T., Ringgenberg, K., Calhoun, B.H., Aylor, J.H., and Lach, J., 2009. Body area sensor networks: Challenges and opportunities. IEEE Computer, 42, 58-65.
28. Heilala, J., Vatanen, S., Tonteri, H., Montonen, J., Lind, S., Johansson, B., and Stahre, J., 2008. Simulation-based sustainable manufacturing system design. Winter Simulation Conference, 1922-1930.
29. Hendrick, H.,W., 2003. Determining the cost–benefits of ergonomics projects and factors that lead to their success. Applied Ergonomics, 34(5), 419-427.
30. Holte K, and Westgaard R., 2001. A comparison of different methods for assessment of psychosocial risk factors for shoulder and neck pain. In: Hagberg M, Knave B, Lillienberg L, Westberg H, (Eds.) X2001—Exposure Assessment in Epidemiology and Practice, Stockholm, 381–382.
31. Jayaram, U., Jayaram, S., Shaikh, I., Kim, Y. J., and Palmer, C., 2006. Introducing quantitative analysis methods into virtual environments for real-time and continuous ergonomic evaluations. Computers in Industry, 57(3), 283–296.
32. Jovanov, E., Milenkovic, A., Otto, C., and De Groen, P.C., 2005. A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. Journal of NeuroEngineering and Rehabilitation, 2(6), 1-10.
33. Karhu, O., Harkonan, R., Sorvali, P., and Vepsalaineu, P., 1981. Observing working postures in industry: Examples of OWAS application. Applied Ergonomics, 12(1), 13-17.
34. Kasabach, C., Pacione, C., Stivoric, J., Teller, A., and Andre, D., 2002. Why the upper arm? Factors contributing to the design of an accurate and comfortable, wearable body monitor. BodyMedia whitepaper.
35. Killough, M.K., and Crampton, L.L., 1996. An Investigation of cumulative trauma disorders in the construction industry. International Journal of Industry Ergonomics, 18(5-6), 399-405.
36. Lampe, M., Strassner, M., and Fleisch, E., 2004. A ubiquitous computing environment for aircraft maintenance. Symposium on Applied Computing, 1586-1592.
37. Li, G., and Buckle, P., 1999. Current techniques for assessing physical exposure to work-related musculoskeletal risks, with emphasis on posture-based methods. Ergonomics, 42(5), 674–695.
38. Li, K., Duffy, V.G., and Zheng, L., 2006. Universal accessibility assessments through virtual interactive design. International Journal of Human Factors Modelling and Simulation, 1(1), 52–68.
39. Lind, S., Johansson, B., Stahre, J., Berlin, C., Fasth, A., and Heilala, J., 2009. SIMTER - A Joint Simulation Tool for Production Development (VTT WORKING PAPERS No. 125): VTT.
40. Lo, B., Thiemjarus, S., King, R., and Yang, G. Z., 2005. Body Sensor Network – A Wireless Sensor Platform for Pervasive Healthcare Monitoring. Proceedings of the International conference on Pervasive Computing, 77-80.
41. Looze, M.P.de, Urlings, I.J.M., Vink, P., Rhijn, J.W.van, Miedema, M.C., Bronkhorst, R.E., and Grinten, M.P.van der., 2001. Towards successful physical stress reducing products: an evaluation of seven cases. Applied Ergnomics , 32(5), 525–534.
42. Lucke, D., Constantinescu, C., and Westkamper, E., 2008. Smart factory-a step towards the next generation of manufacturing. Manufacturing Systems and Technologies for the New Frontier. London: Springer, 115-118.
43. Mayagoitia, R., Nene, A., and Veltink, P.H., 2002. Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems. Journal of Biomechanics, 35(4), 537-542.
44. McAtamney L, and Corlett E., 1993. RULA: a survey method for the investigation of work-related upper limb disorders. Applied Ergonomics, 24(2), 91–99.
45. Miller, N., Jenkins, O. C., Kallmann, M., and Matri’C , M. J., 2004. Motion capture from inertial sensing for untethered humanoid teleoperation. International Conference of Humanoid Robotics, 547–565.
46. Pacelli, M., Loriga, G., Taccini, N. and Paradiso, R., 2006. Sensing Fabrics for Monitoring Physiological and Biomechanical Variables: E-textile solutions. Proceedings of the 3rd IEEE-EMBS, 1-4.
47. Pandian, P. S., Mohanavelu, K., K. Safeer, P., T. Kotresh, M., Shakunthala, D. T., Parvati Gopal and Padaki, V. C., 2008. Smart Vest: Wearable multi-parameter remote physiological monitoring system. Medical Engineering and Physics, 30(4), 466-477.
48. Paradiso, R., Loriga, G., and Taccini, N., 2005. A wearable health care system based on knitted integrated sensors. IEEE Transactions on Information Technology in Biomedicine, 9, 337-344.
49. Poslad, S., 2008. Ubiquitous Computing: Smart Devices, Environments and Interactions. (Eds.) New York: Wiley Interscience.
50. Rosecrance, J., Dpuphrate, D., and Cross, S., 2005. Integration of participatory ergonomics and lean manufacturing: a model and case study. In: Carayon, P., Robertson, M., Kleiner, B., Hoonakker, P.L.T. (Eds.), Human Factors in Organizational Design and Management—VIII. IEA Press, Santa Monica, 437–442.
51. Viikari-Juntura E, Rauas S, Martikainen R, Kumosa E, Riihimaki H, and Saarenmaa K., 1996. Validity of self-reported physical work load in epidemiological studies on musculoskeletal disorders. Scand J Work Environ Health, 22(4), 251-259.
52. Vink, P., Koningsveld, E., and Molenbroek, J.F., 2006. Positive outcomes of participatory ergonomics in terms of greater comfort and higher productivity. Applied Ergonomics, 37(4), 537-546.
53. Vlasic, D., Adelsberger, R., Vannucci, G., Barnwell, J., Gross, M., Matusik, W., and Popovi, J., 2007. Practical motion capture in everyday surroundings. ACM Transactions on Graphics (TOG), 26(3), 35.
54. Welch, G., and Foxlin, E., 2002. Motion tracking: no silver bullet, but a respectable arsenal. Computer Graphics and Applications, 22, 6, 24-38.
55. Wells R., Norman R., Neuman P., Andrews D., Frank J., and Shannon H., 1997. Assessment of physical work load in epidemiologic studies: Common measurement metrics for exposure assessment. Ergonomics, 40(1), 51–61.
56. Westkamper, E., and Jendoubi, L., 2003. Smart factories-Manufacturing environments and systems of the future. 36th CIRP-International Seminar on Manufacturing Systems.
57. Westkamper, E., 2008. The Proactive Initiative ManuFuture Roadmap. In Jovane, F., Westkamper, E., and Williams, D. (Eds.) The ManuFuture Road, Springer Berlin Heidelberg, 123-147.
58. Williamson, R. and Andrews, B., 2001. Detecting absolute human knee angle and angular velocity using accelerometers and rate gyroscopes. Medical and Biological Engineering and Computing, Springer, 39(3), 294-302.
59. Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., Whittle, M., D’Lima, D., Cristofolini, L., Witte, H., Schmid, O., and Stokes, I., 2002. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion - Part I: ankle, hip, and spine. Journal of Biomechanics, 35(4), 543–548.
60. Wu, G., van der Helm, F., Veeger, H., Makhsous, M., Van Roy, P., Anglin, C., Nagels, J., Karduna, A., Mc-Quade, K., Wang, X., Werner, F., and Bucholz, V., 2005. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion - Part II: shoulder, elbow, wrist and hand. Journal of Biomechanics, 38(5), 981–992.
61. Yang, G., and Yacoub, M., 2006. Body Sensor Networks. New York: Springer-Verlag.
62. Zhou, H., and Hu, H., 2008. Human motion tracking for rehabilitation–A survey. Biomedical Signal Processing and Control, 3(1), 1–18.
63. Zhu, R. and Zhou, Z., 2004. A real-time articulated human motion tracking using tri-axis inertial magnetic sensors package. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12, 295-302.