簡易檢索 / 詳目顯示

研究生: 張原瑋
Chang, Yuan-Wei
論文名稱: 雙邊多頻帶直接檢測光學正交分頻多工系統
Double-sided Multiband Direct-Detected Optical OFDM System
指導教授: 馮開明
Feng, Kai-Ming
口試委員: 陳智弘
Chen, Jye-Hong
黃元豪
Huang, Yuan-Hao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 76
中文關鍵詞: 光學正交分頻多工直接檢測多頻帶
外文關鍵詞: O-OFDM, Direct-detection, Multiband
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Optical OFDM系統近年來已成為熱門的研究領域,OFDM系統由於其正交的特性,使子載波可以互相重疊,因此頻譜使用效益比傳統OOK(on-off keying)調變方式大幅上升。在過去的光纖通訊領域中,通常都以光學的方式來做通道補償,但光學補償的方式成本需求高、系統複雜,隨著九零年代積體電路的發展,近年來數位訊號處理已演變成主要的通道補償方式,其原因為使用不同的演算法解決通道所帶來的影響,最後再利用積體電路整合起來,其成本將遠小於光學的通道補償。然而,使用數位訊號處理必須使用DAC與ADC來產生訊號與接收訊號,因此,DAC/ADC的硬體頻寬能否應付光纖通訊系統的大頻寬、大通訊容量將是關鍵。本篇論文提出double-sided多頻帶直接偵測OFDM系統的接收方式來降低系統對於DAC/ADC的需求。
    在本篇論文中,首先將會介紹光學OFDM的基本調變原理與接收方式,接著提到本篇論文數位訊號處理詳細的流程,再來將介紹多頻帶的OFDM系統調變模式,最後,我們將提出double-sided多頻帶OFDM系統實驗架構與詳細實驗流程,在接收端使用OBPF分別解調各個band的方法,解決SSBI的干擾。最後,我們驗證了傳輸速率達75 Gb/s 、頻寬效益達2.1 b/s/Hz的4-band系統與傳輸速率達172 Gb/s 、頻寬效益達2.7 b/s/Hz的6-band系統,並以VPI模擬結果相似,其結果達到錯誤更正碼的極限(BER < 10-3)。而在直接接收系統裡,需要考慮的CSPR參數,我們經由測量不同CSPR時的系統表現,並以VPI模擬實驗系統,確定了系統的最佳CSPR。


    目 錄 摘要................................................................................................................................I 致謝...............................................................................................................................II 目錄..............................................................................................................................III 圖列表...........................................................................................................................V 表列表.......................................................................................................................VIII 第一章 緒論................................................................................................................1 1-1 前言................................................................................................................1 1-2 研究目的與動機............................................................................................3 1-3 論文架構........................................................................................................5 第二章 光學正交分頻多工系統................................................................................6 2-1 OFDM系統調變與解調原理.......................................................................6 2-2 光學調變器....................................................................................................8 2-2-1 Mach-Zehnder Modulator...............................................................8 2-2-2 IQ Optical Modulator...................................................................10 2-3 光學OFDM系統.........................................................................................11 2-3-1 直接檢測......................................................................................11 2-3-2 同調檢測......................................................................................13 2-3-3 直接檢測與同調檢測的差異......................................................14 第三章 數位訊號處理在正交分頻多工系統..........................................................16 3-1 用DSP實現OFDM訊號的調變與解調.....................................................16 3-2 循環字首(Cyclic Prefix)..............................................................................18 3-3 同步(Synchronization).................................................................................21 3-4 等化器(Equalizer)........................................................................................22 3-5 Decision-Directed Phase Noise Compensator..............................................24 3-6 Error vector magnitude.................................................................................26 第四章 Double-sided多頻帶直接偵測OFDM系統..............................................27 4-1 多頻帶OFDM系統.....................................................................................27 4-2 光學多頻帶OFDM系統傳送端.................................................................28 4-3 光學多頻帶OFDM系統接收端.................................................................30 第五章 Double-sided多頻帶直接偵測光學OFDM系統實驗..............................33 5-1 傳輸端架構..........................................................................................33 5-1-1 75Gb/s (4-band)系統............................................................34 5-1-2 Digital to Analog Converter比較........................................38 5-1-3 172 Gb/s (6-band)系統.........................................................40 5-2 接收端架構..........................................................................................44 5-3 75Gb/s系統實驗流程與結果.............................................................45 5-3-1 實驗流程..............................................................................45 5-3-2 實驗結果..............................................................................49 5-4 172 Gb/s系統實驗流程與結果...........................................................56 5-4-1 實驗流程..............................................................................56 5-4-2 實驗結果..............................................................................60 第六章 結論..............................................................................................................72 參考文獻......................................................................................................................74

    [1] http://www.telegeography.com/
    [2] K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies”, Proceedings of the Institution of Electrical Engineers, vol.113, no.7, pp.1151-1158, July 1966
    [3] R. W. Chang, “Synthesis of band-limited orthogonal signals for multi-channel data transmission”, Journal of Bell syst.Tech.J. , vol.45, pp.1775-1796, Dec. 1966.
    [4] R. Chang and R. Gibby, “A Theoretical Study of Performance of an Orthogonal Multiplexing Data Transmission Scheme”, IEEE Transactions on Communication Technology , vol.16, no.4, pp.529-540, August 1968
    [5] S. Weinstein and P. Ebert, “Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform”, IEEE Transactions on Communication Technology, vol.19, no.5, pp.628-634, October 1971
    [6] James W. Cooley and John W. Tukey, “An Algorithm for the Machine Calculation of Complex Fourier Series”, Mathematics of Computation , vol. 19, no. 90, pp. 297-301, April 1965
    [7] A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems”, Opt. Express, vol.14, pp. 2079-2084, 2006
    [8] A. J. Lowery and J. Armstrong, “Adapation of Orthogonal Frequency Division Multiplexing to Compensate Impairments in Optical Transmission Systems”, ECOC, vol. 2, pp. 121-152, 2007
    [9] A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of Optical OFDM in 62
    Ultralong-Haul WDM Lightwave Systems”, Journal of Lightwave Technology, vol 25, no. 1, pp. 131-138, 2007
    [10] M. Sieben, J. Conradi, and D.E. Dodds, “Optical single sideband transmission at 10 Gb/s using only electrical dispersion compensation”, Journal of Lightwave Technology, vol.17, no.10, pp.1742-1749, Oct 1999
    [11] R.I. Killey, P.M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital Processing and a dual-drive Mach-Zehnder Modulator”, IEEE Photonics Technology Letters, vol.17, no.3, pp.714-716, March 2005
    [12] A. J. Lowery, “Amplified-spontaneous noise limit of optical OFDM lightwave systems”, Opt. Express 16, 860-865 (2008)
    [13] Richard van Nee and Ramhee Prasad, OFDM Wireless Multimedia Communication, (Artech House, Boston/London, 1999)
    [14] W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing”, Electronics Letters, vol.42, no.10, pp. 587- 589, 11 May 2006
    [15] Wei-Ren Peng, H. Takahashi, I. Morita, and H. Tanaka, “Direct-detection optical OFDM superchannel”, Optical Communication (ECOC), 2011 37th European Conference and Exhibition on , vol., no., pp.1-3, 18-22 Sept. 2011
    [16] R.A. Shafik, S. Rahman, and AHM Razibul Islam, “On the Extended Relationships Among EVM, BER and SNR as Performance Metrics”, International Conference on Electrical and Computer Engineering , vol., no., pp.408-411, 19-21 Dec. 2006
    [17] Hui-Chuan Lin, “Numerical Study of Self-Coherent Detection in an Optical OFDM System”, Institute of Communication engineering in NTHU, master thesis, 2010
    [18] Fu-Lien Cheng, “Multi-band Direct-detection Optical OFDM System”, Institute of Communication engineering in NTHU, master thesis, 2011
    [19] Jianxin Ma, Xiangjun Xin, Chongxiu Yu, Qi Zhang, Jianjun Yu, Xinzhu Sang and Junying Zeng, “Milimeter-Wave Optical Subcarrier Generation by Using an External Modulator and Optical Carrier Suppression”, International Conference on Transparent Optical Networks , vol.3, no., pp.273-276, 1-5 July 2007
    [20] K. Feng, J. Yan, Y. Chang, and F. Cheng, “A Novel Double-Sided Multiband Direct-Detection Optical OFDM System with Single Laser Source”, in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF1F.5.
    [21] Wei-Ren Peng, Xiaoxia Wu, V.R. Arbab, B. Shamee, Jeng-Yuan Yang, L.C. Christen, Kai-Ming Feng, A.E. Willner and Sien Chi, “Experimental Demonstration of 340 km SSMF Transmission Using a Virtual Single Sideband OFDM Signal that Employs Carrier Suppressed and Iterative Detection Techniques”, Conference on Optical Fiber communication/National Fiber Optic Engineers Conference, vol., no., pp.1-3, 24-28 Feb. 2008

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE